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ML as a Service

• Client delegates the ML service to service provider (Server)

• Separation of specialization

• Cost reductions

Fig 1: Typical MLaaS setup
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Use Cases - Medical prognosis using ML

Problems:

• The ML Provider cannot share the model as it may be proprietary

• The laboratory can not send input data to the ML Provide because of legal prohibitions
or complex agreements.

• Privacy risks

Is it possible to do this computation without the radiology lab ever sharing the
patient’s sensitive data and the ML provider sharing its proprietary model?
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Use Cases - Private set intersection, Apple CSAM Detection

CSAM Detection enables Apple to accurately
identify and report iCloud users who store known
Child Sexual Abuse Material (CSAM) in their iCloud
Photos accounts. Apple servers flag accounts
exceeding a threshold number of images that match
a known database of CSAM image hashes so that
Apple can provide relevant information to the
National Center for Missing and Exploited Children
(NCMEC). This process is secure, and is expressly
designed to preserve user privacy. [1], [2]

• Apple CSAM Detection

• Password Monitoring

• Communication Safety
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Use Cases - Estonian students study I

From [3]
Estonian students study. In Estonia, a country
with arguably the most advanced e-government
and technology awareness, alarms were raised
about graduation rates of IT students. Surpris-
ingly, in 2012, nearly 43% of IT studentsen
rolled in the previous five years had failed to
graduate. One potential explanation considered
was that the IT industry was hiring too ag-
gressively, luring students away from completing
their studies. The Estonian Association of Infor-
mation and Communication Technology wanted
to investigate by mining education and tax
records to see if there was a correlation. How-
ever, privacy legislation prevented data sharing
across the Ministry of Education and the Tax
Board. In fact, k-anonymity-based sharing was
allowed, but it would have resulted in low-quality
analysis, since many students would not have had
sufficiently large groups of peerswith similar qual-
ities. MPC provided a solution,

facilitated by the Estonian company Cybernetica
using their Sharemind framework (Bogdanov et
al., 2008a). The data analysis was done as a
three-party computation, with servers represent-
ing the Estonian Information System’s Author-
ity,the Ministry of Finance, and Cybernetica. The
study, reported in Cybernetica (2015) and Bog-
danov(2015), found that there was no correla-
tion between working during studies and failure
to graduate on time, but that more education
was correlated with higher income.
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Other applications

• Secure machine learning

• privacy-preserving network security monitoring (Burkhart et al., 2010)

• privacy-preserving genomics (Wang et al., 2015a; Jagadeesh et al., 2017)

• Contact discovery (Li et al., 2013; De Cristofaro et al., 2013)

• Spam filtering on encrypted email (Gupta et al., 2017)

• Internet Voting, Credit score, everything which involves sensitive data. . .
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The Rise of MLaaS and Privacy Concerns

• Machine Learning as a Service (MLaaS): Powerful models hosted in the cloud.
• Users send data for inference (predictions).
• Problem: Sensitive data exposure!

– Healthcare (HIPAA, GDPR) [4]
– Financial data
– Personal images, text, etc.

• Also: Companies want to protect their proprietary models [5].
• Without protection: Inference attacks can leak input data or model details [6].

Fig 1: Typical MLaaS setup
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What is Privacy-Preserving ML (PPML) Inference?

Goal: Compute the prediction f(x,w) without revealing sensitive information.

Client (Data Owner)

• Has private input x (e.g., medical
image, financial record).

• Wants the prediction y = f(x,w).

• Privacy Need: Keep x secret from the
Server.

Server (Model Owner)

• Has the ML model f(·) with parameters
w.

• Computes the prediction for the client.

• Privacy Need (Optional): Keep model w
secret from the Client (protect IP).

Key Challenge

How can the server compute f(x,w) on data x it cannot see, potentially using a model w the
client cannot see?
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Solution: Privacy Preserving Machine Learning

Sometimes also called Oblivious Neural Networks.

The solution requires drawing knowledge from four fields of science

• Machine learning

• Computation theory,

• Digital systems theory,

• Cryptography,
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Neural Networks: Layers and Operations

• We focus on the inference phase (model is already trained).

• Neural networks are pipelines of layers.

• Each layer receives an input signal, transforms it, and generates an output signal, which
becomes the input for the next layer. The first layer receives the input data x, and the
output signal of the last layer is the prediction result f(x,w).

x → f1 → a1 → ... → fn → an → y

• There are two types of transformations:
– Linear Transformation: Matrix multiplication + addition (y = Wx+ b). Includes

convolutions.
– Nonlinear Transformation: Activation functions (ReLU, Sigmoid, etc.) and Pooling.

• Goal of Transformations: Make data separable (classifiable).

Stanislaw Baranski PPML Inference April 8, 2025 10 / 37



Visualizing layer transformations
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Key Operations for PPML

Recap: NN inference boils down to a sequence of:

• Linear Ops: Matrix Multiplication, Addition.

• Non-Linear Ops: Activation Functions (e.g., ReLU: max(0, x)), Pooling (e.g., Max
Pooling).

The PPML Connection

To make inference private, we need secure ways to perform these fundamental operations on
hidden data/models!
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Threat Model: Who Are We Protecting Against?

• Honest-but-Curious (Semi-Honest): Standard assumption [7].
– Client and Server follow the protocol correctly.
– But... they might try to learn extra information from the messages they receive.

• Malicious Model: Stronger threat (parties might cheat). Requires more complex defenses
(e.g., ZK Proofs), often too slow for now.

• Privacy Goals Recap:
1. Protect Input/Output Privacy: Server doesn’t learn client’s x. Client learns only f(x,w).

(Main focus of crypto methods).
2. Protect Training Data Privacy: Client queries shouldn’t reveal info about the *original*

training dataset [8]. (Where DP helps).
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Approach 1: Homomorphic Encryption (HE)

Concept: Compute directly on encrypted data! [9]

1. Client encrypts input x with public key pk → Enc(x).

2. Client sends Enc(x) to Server.

3. Server computes Enc(f(x,w)) using HE operations on Enc(x) and potentially encrypted w.

4. Server sends Enc(f(x,w)) back to Client.

5. Client decrypts with secret key sk → f(x,w).

Pros:

✓ Strong crypto guarantees for data privacy.

✓ Low communication rounds (often just 1).

✓ No trusted third party needed.

✓ Supports batching (SIMD).

Cons:

é Very high computation cost (slow!).

é Large ciphertext sizes.

é Limited operations (non-linear are hard, need
approximations like polynomials → accuracy
loss).

é Noise growth limits computation depth (needs
costly bootstrapping).

Example: CryptoNets (2016) showed feasibility on MNIST, but slow. [9]
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Approach 2: Secure Multi-Party Computation (MPC)

Concept: Multiple parties jointly compute a function on their private inputs without revealing
them [5]. Common Techniques:

• Secret Sharing: Input x and model w split into shares [x1], [x2] and [w1], [w2]. Shares
given to non-colluding servers (or client + server). Servers compute on shares. Linear ops
are easy!

• Garbled Circuits (GC): Encrypts the logic of the function. Good for non-linear ops (like
ReLU), often used with secret sharing.

Pros:

✓ Often faster computation than HE.

✓ Can handle non-linear functions well (using GC).

✓ Naturally protects both input and model.

✓ Many frameworks exist (CrypTen, TF
Encrypted).

Cons:

é High communication cost (many rounds, large
data transfer).

é Often requires multiple (>1) non-colluding
servers for efficiency/simplicity.

é Can be complex to implement correctly.
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Hybrid HE + MPC: Best of Both Worlds?

Idea: Combine HE and MPC to leverage their strengths [7]. Common Strategy (e.g., Gazelle [10]):

• Use HE or Additive Secret Sharing for Linear Layers (efficient additions/multiplications).

• Use Garbled Circuits (MPC) for Non-Linear Layers (like ReLU).

Why this works

Linear layers dominate compute time but are HE/Secret-Sharing friendly. Non-linear layers are bottlenecks for
HE but cheaper with GC.

Results: Significant speedups compared to pure HE or pure MPC. Gazelle was 20x faster than prior MPC,
1000x faster than CryptoNets (HE) [10]. Many state-of-the-art systems use hybrid approaches (e.g., Delphi [5]).
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Approach 3: Trusted Execution Environments (TEEs)

Concept: Use secure hardware enclaves (like Intel SGX, ARM TrustZone) [11].

1. Server runs inference code inside a protected hardware ”bubble” (enclave).

2. Client uses Remote Attestation to verify the correct code is running in a genuine TEE.

3. Client encrypts data x, sends it to the enclave.

4. Enclave decrypts x, computes f(x,w) on plaintext data inside the secure bubble.

5. Enclave encrypts result f(x,w), sends back to Client.

Pros:

✓ Near-native performance (plaintext compute
inside).

✓ Low latency, low communication overhead.

✓ Can protect both data and model.

✓ Easier integration for existing models.

Cons:

é Requires trust in hardware vendor (Intel, ARM,
etc.).

é Vulnerable to side-channel attacks (Spectre,
Meltdown, etc.).

é Limited secure memory size (can be issue for
large models).

é Requires specific hardware support.
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Approach 4: Differential Privacy (DP)

Concept: Add carefully calibrated noise to computations to protect individual data points
[12]. Role in Inference: Primarily protects training data privacy, not usually input privacy

during inference.
• DP Training: Train a model (e.g., DP-SGD) that is inherently privacy-preserving w.r.t. its training data

[13]. Queries to this model are safer.

• Output Perturbation: Server adds noise to the prediction f(x,w) before sending it back. (Rarely desired
due to accuracy loss).

• Local DP: Client adds noise to their input x before sending it. Protects input from server, but often
causes large accuracy drop [14].

Pros:

✓ Mathematically rigorous privacy guarantees
(ϵ-DP).

✓ Lightweight computation.

✓ Addresses training data leakage concerns.

Cons:

é Doesn’t hide raw input from the server (unless
local DP).

é Adding noise inherently reduces accuracy/utility.

é Primarily protects training set, not inference
input itself.

Often used to complement crypto/TEE methods.
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Approach 5: Split / Federated Inference

Concept: Don’t send raw data, maybe send the model (or part of it) instead.

• On-Device Inference: Run the entire model locally on the client device.

+ Perfect data privacy (data never leaves).
- Model is fully exposed. Requires capable client device.

• Split Inference / Split Learning: [14], [15]
1. Client runs first few layers of the model on raw input x.
2. Client sends intermediate activation (feature vector) to Server.
3. Server runs remaining layers, sends final prediction back.

+ Hides raw data x. Balances computation. Lower overhead than crypto.
- Intermediate activations can still leak information! Model is partially revealed.
+ Can add noise (Local DP) to activations for better privacy (e.g., Split-and-Denoise [14]).
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Comparison of Approaches I

Approach Privacy Guarantee Efficiency Comm. Cost Scalability Security
Assumptions

Limitations

Homomorphic
Encryption (HE)

Strong
(Mathematical)

Low (High
Computation)

Low (Min
Interaction)

Limited (Slow
for Deep)

No Trusted Party High Latency, Large
Ciphertext

Secure
Multi-Party
Comp. (MPC)

Strong
(Mathematical)

Medium
(Protocol Dep.)

High (Multiple
Rounds)

Moderate Honest Majority /
Non-collusion

High Comm.
Overhead

Trusted Exec.
Env. (TEEs)

Hardware-Based High
(Near-Native)

Low (Minimal
Comm.)

High (Large
Models OK)

Trusted Hardware
Vendor

Side-Channels, Trust
Vendor

Differential
Privacy (DP)

Statistical
(Training Data
focus)

High Low (Minimal
Overhead)

High Trusted Aggregator
(if used)

Adds Noise →
Utility Loss, Doesn’t
hide input

Federated / Split
Learning

Partial (Limited
Input Privacy)

High (On-Device
part)

Medium
(Intermediate Data)

High Secure Aggregator
(if FL)

Intermediate
Leakage, Model
Exposure

Table adapted from baranski2024survey.
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Frameworks and Libraries

PPML is becoming more practical with dedicated tools:

Homomorphic Encryption:

• Microsoft SEAL [16]

• OpenFHE [17]

• HElib [18]

• TFHE / Concrete [19], [20]

• nGraph-HE (Intel) [21]

Secure Multi-Party Comp.:

• ABY / ABY3 [22]

• CrypTen (Meta/Facebook) [23]

• TF Encrypted [24]

• EMP-toolkit [25]

• SecureDFL [26] (Federated focus)

These tools abstract away some of the cryptographic complexity.
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Performance: The Reality Check

• Pure HE: Still very slow for deep networks. CryptoNets (MNIST) took minutes initially
[9], though optimized versions are faster. Logistic regression example: 5 sec/sample [27].

• MPC / Hybrid: Much better, but communication is the bottleneck.
– Gazelle (small CNN): ¡ 0.5s latency, few MB comm [10].
– Delphi (ResNet-32 optimized): Few seconds online time, tens of MB comm (after heavy

offline pre-processing) [5].
– Recent work (ResNet-18): 1 second latency with hardware optimization [11]. ReLU ops

often dominate time [28].

• TEEs: Fastest option (near native speed), but relies on hardware trust.

• Key Trend: Optimizing the model architecture for privacy (fewer non-linear ops,
quantization) significantly helps performance [5], [29].

Takeaway

There’s a significant overhead compared to plaintext inference, but progress is rapid, especially
with hybrid methods and optimization.
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The PPML Landscape: Privacy vs. Efficiency

Fig 3: Conceptual Trade-offs in PPML (from
baranski2024survey)
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Big players solutions — Apple PCC

Problem: How to run powerful AI features (e.g., advanced Siri) that are too complex for
on-device processing, without compromising user privacy? [30], [31]

Apple’s Approach (PCC):
• Secure Offloading: Send necessary data to dedicated Apple servers for inference.
• Not HE/MPC: Computation happens on decrypted data inside the PCC infrastructure.
• Focus on Infrastructure Security & Policy:

– Stateless Servers: Data is NOT stored persistently after processing. Used only for the
query.

– Cryptographic Unlinkability: Requests are not tied to a user’s Apple ID on PCC servers.
– Minimal Footprint: Purpose-built, minimal OS and software stack reduces attack surface.
– Access Control: Technical measures claimed to prevent Apple employees from accessing

user data during processing.

Key Idea
Privacy relies on strong infrastructure design and operational guarantees, not purely on cryptographic blindness
during compute (like HE/MPC).
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PCC Security: Verifiable Privacy Claims

How does Apple build trust in these infrastructure claims?

Verifiability Mechanism:
• Published Software Images: Apple makes the software images that run on PCC servers publicly available.

• Independent Expert Audit: Security researchers can download and analyze these images.

• Goal of Audit: Verify that the code implements the privacy promises (statelessness, no logging,
unlinkability, etc.).

• Contrast to Crypto Proofs: This is not a per-computation proof (like ZKP). It’s trust based on
transparency and expert validation of the system’s software design.

Trust Model
Users trust that:

1. The published software images accurately represent what runs on PCC servers.

2. The expert community’s analysis is thorough and trustworthy.

3. Apple operates the infrastructure securely and honestly according to the verified design.
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PCC in the PPML Landscape

Where does Apple’s approach fit compared to the techniques we surveyed?

Efficiency:

✓ High. Compute on plaintext data on powerful
servers. Much faster than HE/MPC.
Comparable to standard cloud inference.

Privacy Guarantees:

• Stronger than typical cloud processing.

• Weaker mathematical guarantee than HE/MPC
(requires trust in Apple’s operation & security).

• Conceptually similar to TEEs (relies on
hardware/software isolation).

Conceptual Placement:

• Near TEEs on efficiency.

• Privacy level between standard cloud and

TEE/Crypto, heavily reliant on:

– Vendor operational security.
– Verifiability via transparency.

• Represents a specific ”Vendor-Controlled
Secure Infrastructure” model.

Takeaway
Major players like Apple are developing custom, large-scale solutions that blend hardware security, operational
policy, and transparency to balance strong privacy with high performance for demanding ML tasks.
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The PPML Landscape with PCC
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The PPML Landscape: Privacy vs. Efficiency

• No single ”best” solution. Choice depends on the specific scenario.

• Spectrum from max efficiency/low privacy (on-device) to max privacy/high cost (FHE).

• Hybrids (MPC, TEE, Split) try to find a balance.
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Open Challenges

• Scalability: Handling massive models (Transformers, LLMs) efficiently. Current methods
struggle. Need model compression/distillation or new PPML techniques [32], [33].

• Efficiency: Reducing computation and communication (fewer rounds, hardware
acceleration [7]).

• Robustness: Security against malicious actors (not just honest-but-curious). Defending
against TEE side-channels.

• Usability: Making PPML tools ”plug-and-play” for ML engineers. Need better
compilers/frameworks [34], [35].

• Privacy-Utility Trade-off: Systematically balancing privacy guarantees vs.
performance/accuracy needs.

• Standardization: Common benchmarks and evaluation methods needed for fair
comparison [4].
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Conclusion

• PPML inference is crucial for enabling secure MLaaS.

• We have a diverse toolkit: HE, MPC, TEEs, DP, Split Learning. Each with pros and cons.

• Hybrid approaches are currently state-of-the-art for balancing privacy and performance.

• Performance is improving, but significant overhead remains, especially for large models.

• Key challenges include scalability, usability, and robustness against stronger adversaries.

• Future directions: Better frameworks, hardware acceleration, standardized benchmarks,
combining techniques (e.g., DP + MPC).

The Big Picture

PPML allows us to harness the power of AI on sensitive data, unlocking applications in
healthcare, finance, and beyond, while respecting privacy. It’s a rapidly evolving and important
field!
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Questions?

Thank You!

Questions?

Based on the paper: Baranski, S. (2025). A Survey on Privacy-Preserving Machine Learning Inference. TASK Quarterly
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