
Stanisław Barański, https://stan.bar

Privacy-Preserving Machine Learning

22.10.2024

ML as a Service

• Client delegates the ML service
to service provider (Server)

• Separation of specialization

• Cost reductions

Use case
Medical prognosis using machine learning

Use case
Medical prognosis using machine learning

Problems:

- The ML Provider cannot share the model as it may be proprietary

- The laboratory can not send input data to the ML Provide

because of legal prohibitions or complex agreements.

- Privacy risks

Use case
Medical prognosis using machine learning

Is it possible to do this computation without the
radiology lab ever sharing the patient’s sensitive data
and the ML provider sharing its proprietary model?

Use case
Estonian students study

Source: Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.

Use case
Private set intersection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf  
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

CSAM Detection enables Apple to accurately
identify and report iCloud users who store
known Child Sexual Abuse Material (CSAM) in
their iCloud Photos accounts. Apple servers
flag accounts exceeding a threshold number of
images that match a known database of CSAM
image hashes so that Apple can provide
relevant information to the National Center for
Missing and Exploited Children (NCMEC). This
process is secure, and is expressly designed to
preserve user privacy.

Apple CSAM Detection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Use case
Private set intersection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf  
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Apple CSAM Detection

Password Monitoring

Communication Safety

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Other applications

• Secure machine learning

• privacy-preserving network security monitoring (Burkhart et al., 2010)

• privacy-preserving genomics (Wang et al., 2015a; Jagadeesh et al., 2017)

• Contact discovery (Li et al., 2013; De Cristofaro et al., 2013)

• Spam filtering on encrypted email (Gupta et al., 2017)

• Internet Voting, Credit score, everything which involves sensitive data…

Problem statement

• Server learns nothing about Client's input;

• Client learns nothing about the Server’s model;

• Yet the predictions are correct.

Solution:
Oblivious Neural Networks

Solution:
Oblivious Neural Networks

Privacy Preserving Machine Learning

Privacy Preserving Machine Learning

• The solution requires drawing knowledge from four fields of science

• Machine learning

• Computation theory,

• Digital systems theory,

• and Cryptography,

Neural Networks

• A neural network is a pipeline of layers. Each layer receives an input signal,
processes it, and generates an output signal, which becomes the input for the
next layer. The first layer receives the input data x, and the output signal of
the last layer is the prediction result C(x, w).

• A typical neural network layer performs a linear transformation (matrix
multiplication and addition), followed by a nonlinear transformation (an
activation function, and sometimes pooling to reduce data resolution).
Predictions using neural networks can be represented as a pipeline of
transformations:

x → f1 → a1 → . . . → fn → an → y

Neural Networks

• The goal of these transformations is to distort the
input data space in such a way that it becomes
linearly separable—that is, to create a line (if the
input data is described in two dimensions), a
plane (in three dimensions), or a hyperplane (in n
+ 1 dimensions) that can divide the input set into
two subsets.

• Figure 7.2 illustrates the transformations of each
layer of a sample neural network. Achieving linear
separability of data (into green and red regions) is
possible through a sequence of linear and
nonlinear transformations. Linear transformations
allow for rotating, tilting, and stretching the
space, while nonlinear transformations enable
deformation of the space.

Neural Networks
Linear transformations

• Matrix multiplication and addition are the most commonly used linear
transformations in neural networks:

•

• where:

• x is the input vector;

• W is the weight matrix;

• b is the bias vector;

• y is the output vector.

y := W ⋅ x + b

Neural Networks
Linear transformations

• Convolution is a linear transformation that allows calculating the dot product
between the weight tensor (filter, also called kernel) and an element of the
matrix along with its neighboring elements. This process is repeated by
sliding the filter over the input matrix. In practice, convolutions are
transformed into a form of matrix multiplication and addition, which improves
efficiency [12], similar to the previous equation, with the difference that both
the input and the bias are matrices: Y := W · X + B

Neural Networks
Non-linear transformations

• Neural networks use nonlinear transformations to model the nonlinear relationship between the input and output space.

• Activation functions can be classified into three categories.

• Piecewise Linear Activation Function. This type of function can be represented as a set of linear functions , where is constrained by a lower and
upper limit for each interval. Examples of such functions are:

• Rectified Linear Units (ReLU):

• Leaky ReLU:

• Maxout:

• Smooth (Regular) Activation Function

• Sigmoid (logistic):

• Hyperbolic tangent (tanh):

• Softplus:

• Softmax is most commonly used as the final layer of a neural network to determine the probability distribution for classification. The function is defined as

•

n fi(x) = aix + bi x

f(x) = max(0,x)

f(x) = max(0,x) + amin(0,x)

f(x) = max(y1, …, yn)

f(x) = 1
1 + e−x

f(x) = e2x − 1
e2x + 1

f(x) = log(ex + 1)

softmaxi(x) = exi

∑k exk

Neural Networks
Non-linear transformations

• Pooling is an operation that reduces the resolution of a matrix. Also known as
a folding operation, it involves organizing the input data into subgroups and
aggregating each subgroup, thereby reducing the dimensionality of the input
data. Most commonly, the elements are aggregated using an averaging
function (mean pooling) or maximization (max pooling).

Privacy preserving neural networks

• The prediction phase using neural networks boils down to a sequence of
linear and nonlinear transformations.

• Linear transformations consist of matrix multiplication and addition.

• Nonlinear transformations involve applying activation functions or pooling
operations.

• Therefore, to make the entire inference process privacy-preserving, it is
sufficient to make the operations of matrix multiplication and addition, as
well as activation functions and pooling operations, privacy-preserving.

Secure Multi-party computation (MPC)

Secure multi-party computation (MPC)

• Secure multi-party computation (MPC) is a
technique that allows independent
participants to execute an arbitrary algorithm

 in such a way that none of them
learns anything about the input data of the
other participants.

• For our purposes, we will focus on the case
where only two parties (a client and a server)
participate in executing the algorithm . This
specific case is called secure two-party
computation (2PC).

n

F(x1, …, xn)

Secure two-party computation (2PC)

• The simplest way to execute the algorithm
 so that neither party learns anything

about the other party’s input data is to
introduce a trusted third party (TTP), which
receives the input data from both
participants, executes the functionality ,
and returns the computation result.

F

F

Secure two-party computation (2PC)

• Introducing a trusted third party is
problematic for several reasons, the
most important being the often
unacceptable assumption regarding the
actual honesty of the TTP. Therefore,
this is an assumption we strive to avoid
at all costs when designing trustworthy
information systems.

• 2PC addresses this problem by
enabling the same functionality without
the help of a TTP.

Secure two-party computation (2PC)

Secure two-party computation (2PC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).

Garbled Circuit (GC)

Secure two-party computation (2PC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).

He proposed a Yao’s Millionaires Problem which states: "Two millionaires wish to know
who is richer without revealing their actual wealth.”

So the goal is to compute where is the first party’s private input and is the
second party’s private input.

a ≥ b a b

f(a, b) = a ≥ b

Garbled Circuit (GC)

Secure two-party computation (2PC)

To simplify the example, let’s assume that the numbers and represent the number
of digits in each student’s wealth, and that the maximum number of digits is 4. Let’s
call as Server, as Client. The domain of the function is , and the
codomain is , where 1 represents true and 0 represents false.

In the first step, one of the parties (let’s assume it’s the server) creates a lookup table
of all possible evaluations of the function , i.e.,

.

Evaluating the function represented in the form of a table
involves retrieving the corresponding row from the column , for the values and

.

a b

a b F X = 1,2,3,4
Y = {1,0}

F
⟨F⟩ = ⟨F(1,1) = 1,F(1,2) = 0,…, F(4,4) = 1⟩

f(a, b) = a ≥ b ⟨F⟩
⟨F⟩ a

b

Yao’s Millionaires Problem

Secure two-party computation (2PC)

To create an unconscious version of the function represented in the form of the
table , the server encrypts the table using randomly generated keys for each
value of and . Specifically, for each value and , the server assigns a
strong pseudorandom key and , where is the security
parameter indicating the bit length of the encryption key.

This creates a total of keys
used to encrypt the function result for each combination of arguments and . Let

 be a symmetric encryption function that is parameterized by two encryption
keys: the server key for value , and the client key for value . Encryption with
two keys can be implemented in several ways; one approach is double encryption—
first with the server’s key, and then with the client’s key. Formally, this is represented
as .

We denote the encrypted table as

F
⟨F⟩

a b a ∈ X b ∈ X
ka ∈ 0,1κ kb ∈ 0,1κ κ

|X | + |X | = 8 (k(1)
a , k(2)

a , k(3)
a , k(4)

a , k(1)
b , k(2)

b , k(3)
b , k(4)

b)
F a b

Eka,kb
(⋅)

ka a kb b

Eka,kb
(⋅) = Ekb

(Eka
(⋅))

⟨F⟩ E(⟨F⟩)

Yao’s Millionaires Problem

Secure two-party computation (2PC)

The table prepared by the server is almost ready to be sent to the
client. Almost, because if the client received the table in this form,
they could deduce both and based on the specific row of the
table. Therefore, the final modification is to apply a random
permutation so that the client cannot deduce the value of . This
results in the table

At this point, the table is ready. The server sends the table to the
client along with the key , where is the value chosen by the
server. Let’s assume that this value is , so the server sends the
key to the client.

a b

a
Perm(E(⟨F⟩))

k(i)
a i

i = 4
k(4)

a

Yao’s Millionaires Problem

Secure two-party computation (2PC)

Note that the key itself is a random bit string that carries no information. It
does not allow decryption of any row in the table and does not provide any clue
about the server’s input. The obliviousness of the computation is achieved only
in the next step, which proceeds as follows.

The server conducts an Oblivious Transfer (OT) procedure with the client,
allowing the client to choose one key from the set of offered keys

 in such a way that the server does not learn which key was
chosen, and the client learns nothing about the other keys besides the one they
selected. In our example, let’s assume the client’s wealth has a digit count of

, so the client selects the key .

At this point, the client has all the necessary elements to reconstruct the value of
the function . Combined with the previously received key , the client
can decrypt only the row encrypted with both keys and , which is the
second row with the value . The client decrypts the row as

, obtaining a positive value that indicates that the
server’s wealth is greater, i.e., .

k(4)
a

k(1)
b , k(2)

b , k(3)
b , k(4)

b

j = 3 k(3)
b

F(a, b) k(4)
a

k(4)
a k(3)

b
Ek(4)

a ,k(3)
b

(1)
Ek(4)

a ,k(3)
b

(Ek(4)
a ,k(3)

b
(1)) = 1

F(4,3) = 4 ≥ 3

Yao’s Millionaires Problem

Secure two-party computation (2PC)

• The size of the table is

• For two uint32’s the size of the table is

• Each value encoded on 4 bytes

•

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem

Secure two-party computation (2PC)

• The size of the table is

• For two uint32’s the size of the table is

• Each value encoded on 4 bytes

•

But, for a small domains it works fine

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem

Secure two-party computation (2PC)

Logic gates have a domain size of 4 = |{0,1}| x |{0,1}|.

We can apply the lookup table technique to a sequence of logic
gates, without blowing out the table size.

Thanks to Church Theorem we know that every algorithm can be
represented as

• Turing machine

• RAM machine

• Logic gate network

As a result we can represent any algorithm via logic gate network.

Then by representing them as an encrypted lookup table compute
MPC, and we get Yao’s Garbled Circuit (GC) technique.

Function as a lookup problem

Garbled Circuit (GC) technique

• In the GC protocol, the algorithm is represented in the form of a logical
circuit , which consists of a set of logic gates , connected
by wires . Each gate is a function that takes values from
two input wires and returns a value on the output wire. For example, let
be an OR gate, with input wires and , and an output wire . The gate

 represents the function , such that

•

F
C G = g1, g2, …, gm

W = w1, w2, …, wn gi
gOR

w1 w2 w3
gOR w3 ← gOR(w1, w2)

0 ← gOR(0,0), 1 ← gOR(0,1), 1 ← gOR(1,0), and 1 ← gOR(1,1) .

Garbled Circuit (GC) technique

• The functionality that we want to execute obliviously must be converted into a logical circuit , or more
specifically, a netlist, which is then garbled using the GC protocol.

• The transformation of functionality into a netlist is a common method in digital circuit design. It can be done
natively using languages such as Verilog or VHDL, or by using HLS (high-level synthesis) tools that allow synthesis
from high-level languages such as C (e.g., SPARK, CBMC-GC) or Python (e.g., PandA). This process results in a
hardware description of the logic circuit in an HDL (Hardware Description Language) format, which allows for the
creation of a simplified netlist describing the components of the circuit and the connections between them.

• Afterwards, the netlist created in this way can be executed obliviously using the GC protocol.

• There are tools that facilitate these transformations. Some of them take an HDL hardware description of a logic
circuit as input, such as: TinyGarble, ABY

• Others provide a full set of tools, from a programming language to a runtime environment, such as: MP-SPDZ,
MPyC, EzPC, EMP-Toolkit

• More https://github.com/MPC-SoK/frameworks

F CF

F

https://github.com/esonghori/TinyGarble
https://github.com/encryptogroup/ABY
https://github.com/data61/MP-SPDZ
ttps://github.com/lschoe/mpyc/
https://github.com/mpc-msri/EzPC
https://github.com/emp-toolkit
https://github.com/MPC-SoK/frameworks

Neural network inference is all about matrix multiplications and activation
functions

• We know how to convert any algorithm into an unconscious version using the GC protocol. We also know how inference is
performed using neural networks. What remains is to combine the knowledge to create an unconscious neural network
prediction.

• Prediction using a neural network can be modeled as a recursive sequence of matrix multiplication and addition, along with
activation/pooling functions:

•

• The goal of unconscious neural networks is to compute the value in such a way that the client learns nothing about
 and , while the server learns nothing about and .

• To achieve such isolation, we substitute the inputs of each party into the functional model , where is the private
input of one party and is the private input of the other party. In our case, and

. As a result, we have:

•

z := WL * fL−1(. . . f1(W1 * X + B1) . . .) + BL

z
(W1, W2, …, WL) (B1, B2, …, BL) X z

F2PC(a, b) a
b a = X

b = ((W1, W2, …, WL), (B1, B2, …, BL))

F2PC(X, ((W1, W2, . . . , WL), (B1, B2, . . . , BL))) = WL * fL−1(. . . f1(W1 * X + B1) . . .) + BL

Oblivious Neural Network pipeline

source: https://stan.bar/papers/ONN-KASKBook2022.pdf

Performance

Source: https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10

https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10

LLM

• Privacy-Preserving Large Language Models
(PPLLMs)

• PermLLM: Private Inference of Large
Language Models within 3 Seconds under
WAN

• Faster Lookup Table Evaluation with
Application to Secure LLM Inference

https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://eprint.iacr.org/2024/1093.pdf
https://eprint.iacr.org/2024/1093.pdf

State of the art

• SIRNN (Microsoft Research)

• Cheetah (Alibaba Group)

• CipherGPT (Zhejiang University, Ant
Group)

• BumbleBee (Ant Group, Alibaba Group,
Zhejiang University)

• CraterLake (Massachusetts Institute of
Technology)

• Iron (University of Electronic Science
and Technology of China, Nanyang
Technological University)

• BOLT (Carnegie Mellon University UC
Berkeley, Technical University of
Darmstadt)

My Work

References

• Smart, Nigel P., and Nigel P. Smart. Cryptography made simple. Springer, 2016.

• Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.

• Mann, Zoltán Ádám, et al. "Towards practical secure neural network inference: the journey so far and the road ahead." ACM Computing Surveys 56.5 (2023): 1-37.

• Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy." International conference on machine learning. PMLR, 2016.

• Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine learning." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.

• Liu, Jian, et al. "Oblivious neural network predictions via minionn transformations." Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017.

• Riazi, M. Sadegh, et al. "Chameleon: A hybrid secure computation framework for machine learning applications." Proceedings of the 2018 on Asia conference on computer and communications
security. 2018.

• Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "{GAZELLE}: A low latency framework for secure neural network inference." 27th USENIX Security Symposium (USENIX
Security 18). 2018.

• Riazi, M. Sadegh, et al. "{XONN}:{XNOR-based} Oblivious Deep Neural Network Inference." 28th USENIX Security Symposium (USENIX Security 19). 2019.

• Chandran, Nishanth, et al. "EzPC: programmable, efficient, and scalable secure two-party computation for machine learning." Cryptology ePrint Archive (2017).

• Mishra, Pratyush, et al. "Delphi: A cryptographic inference service for neural networks." 29th USENIX Security Symposium (USENIX Security 20). 2020.

• Kumar, Nishant, et al. "Cryptflow: Secure tensorflow inference." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

• Lu, Wen-jie, et al. "Bumblebee: Secure two-party inference framework for large transformers." Cryptology ePrint Archive (2023).

• Hou, Xiaoyang, et al. "Ciphergpt: Secure two-party gpt inference." Cryptology ePrint Archive (2023).

