Privacy-Preserving Machine Learning

Stanislaw Baranski
stanislaw.baranski@pg.edu.pl
https://stan.bar

22.10.2024

ML as a Service

* Client delegates the ML service
to service provider (Server)

e Separation of specialization

e Cost reductions

Training phase

00000000000000000

Inference phase

0000000000000000

/ Server \
. Training Trained
[Trammg set H algorithm model w

Inference <

\ algorithm C /

Input vector x

>

o

C(x,w)

oooooo

Inference output

v

Use case

Medical prognosis using machine learning

Radiology Lab = ML Provider

Use case

Medical prognosis using machine learning

Radiology Lab . ML Provider

Problems:
- The ML Provider cannot share the model as it may be proprietary

- The laboratory can not send input data to the ML Provide
because of legal prohibitions or complex agreements.

- Privacy risks

Use case

Medical prognosis using machine learning

Radiology Lab . ML Provider

Is it possible to do this computation without the
radiology lab ever sharing the patient’s sensitive data
and the ML provider sharing its proprietary model?

Use case

Estonian students study

Confidential data sources

VARVARY,

)
External
privacy
Processing without controls
ever seeing the data
Minimal | == New
risk /\/ —+| knowledge

Source: Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.

Estonian students study. In Estonia, a country with arguably the most
advanced e-government and technology awareness, alarms were raised about
graduation rates of IT students. Surprisingly, in 2012, nearly 43% of IT
students enrolled in the previous five years had failed to graduate. One potential
explanation considered was that the IT industry was hiring too aggressively,
luring students away from completing their studies. The Estonian Association
of Information and Communication Technology wanted to investigate by
mining education and tax records to see if there was a correlation. However,
privacy legislation prevented data sharing across the Ministry of Education
and the Tax Board. In fact, k-anonymity-based sharing was allowed, but it
would have resulted in low-quality analysis, since many students would not
have had sufficiently large groups of peers with similar qualities.

MPC provided a solution, facilitated by the Estonian company Cybernetica
using their Sharemind framework (Bogdanov et al., 2008a). The data analysis
was done as a three-party computation, with servers representing the Estonian
Information System’s Authority, the Ministry of Finance, and Cybernetica. The
study, reported in Cybernetica (2015) and Bogdanov (2015), found that there
was no correlation between working during studies and failure to graduate on
time, but that more education was correlated with higher income.

Use case

Private set intersection

Apple CSAM Detection CSAM Hashes Client device o (Cloud

, e " em @&
CSAM Detection enables Apple to accurately N~ Sinded and ; | I
identify and report iCloud users who store image hashes 7 y : PSI Matching
known Child Sexual Abuse Material (CSAM) in . I
their iCloud Photos accounts. Apple servers generation l “““ | J/
flag accounts exceeding a threshold number of Cloud filtered
images that match a known database of CSAM safety vouchers
image hashes so that Apple can provide
relevant information to the National Center for l

Missing and Exploited Children (NCMEC). This ireholc
process is secure, and is expressly designed to exceeded, decrypt
preserve User privacy.

https://www.apple.com/child-safety/pdf/Apple PSI System Security Protocol and Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM Detection Technical Summary.pdf

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Use case

Private set intersection
Ce
N

V

Blinded and .
embedded |

Apple CSAM Detection S C PSI Matching

Safety voucher
. . generation
Password Monitoring ; l

iCloud filtered

safety vouchers
Communication Safety |
(=)
This photo could It's your choice, If threshold
be sensitive. but make sure you exceeded, decrypt

Are you sure you feel safe.

want to view?

https://www.apple.com/child-safety/pdf/Apple PSI System Security Protocol and Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM Detection Technical Summary.pdf

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Other applications

* Secure machine learning

* privacy-preserving network security monitoring (Burkhart et al., 2010)

e privacy-preserving genomics (Wang et al., 2015a; Jagadeesh et al., 2017)
* Contact discovery (Li et al., 2013; De Cristofaro et al., 2013)

o Spam filtering on encrypted email (Gupta et al., 2017)

* |Internet Voting, Credit score, everything which involves sensitive data...

Problem statement

* Server learns nothing about Client's input;
* Client learns nothing about the Server’s model;

* Yet the predictions are correct.

Solution;
Oblivious Neural Networks

Solution:
Obliaeus Neural Networks
Privacy Preserving Machine Learning

Privacy Preserving Machine Learning

* The solution requires drawing knowledge from four fields of science
 Machine learning
 Computation theory,
* Digital systems theory,

* and Cryptography,

Neural Networks

* A neural network is a pipeline of layers. Each layer receives an input signal,
processes Iit, and generates an output signal, which becomes the input for the

next layer. The first layer receives the input data x, and the output signal of
the last layer is the prediction result C(x, w).

* A typical neural network layer performs a linear transformation (matrix
multiplication and addition), followed by a nonlinear transformation (an
activation function, and sometimes pooling to reduce data resolution).

Predictions using neural networks can be represented as a pipeline of
transformations:

X—=>f—=a —>...>f >a =Y

Neural Networks

* The goal of these transformations is to distort the —
input data space in such a way that it becomes - C e,
linearly separable—that is, to create a line (if the it T
input data is described in two dimensions), a 2 L ST
plane (in three dimensions), or a hyperplane (inn *= =& «°
+ 1 dimensions) that can divide the input set into . :
two subsets. yi=Wex+b y = tanh ()

* Figure 7.2 illustrates the transformations of each
layer of a sample neural network. Achieving linear |
separability of data (into green and red regions) is e~
possible through a sequence of linear and
nonlinear transformations. Linear transformations . T | |
allow for rotating, tilting, and stretching the yi=W-x+b y = tanh(x = Wexth
space, while nonlinear transformations enable
deformation of the space.

Neural Networks

Linear transformations

 Matrix multiplication and addition are the most commonly used linear
transformations in neural networks:

. y=W-x+0b
* where:

e X IS the input vector;

W is the weight matrix;

 bis the bias vector;

* vy Is the output vector.

Neural Networks

Linear transformations

 Convolution is a linear transformation that allows calculating the dot product
between the weight tensor (filter, also called kernel) and an element of the
matrix along with its neighboring elements. This process is repeated by
sliding the filter over the input matrix. In practice, convolutions are
transformed into a form of matrix multiplication and addition, which improves
efficiency [12], similar to the previous equation, with the difference that both
the input and the bias are matrices: Y :=W - X+ B

Neural Networks

Non-linear transformations

* Neural networks use nonlinear transformations to model the nonlinear relationship between the input and output space.
» Activation functions can be classified into three categories.

 Piecewise Linear Activation Function. This type of function can be represented as a set of n linear functions f,(x) = a,x + b;, where x is constrained by a lower and
upper limit for each interval. Examples of such functions are:

 Rectified Linear Units (ReLV): f(x) = max(0,x)
« Leaky ReLU: f(x) = max(0,x) + amin(0,x)
« Maxout: f(x) = max(yy, ...,Y,)

 Smooth (Regular) Activation Function

1
l+e>

. Sigmoid (logistic): f(x) =

e — 1

e? + 1

. Hyperbolic tangent (tanh): f(x) =

« Softplus: f(x) = log(e*+ 1)

e Softmax is most commonly used as the final layer of a neural network to determine the probability distribution for classification. The function is defined as

. Softmax,(x) =

T,

Neural Networks

Non-linear transformations

 Pooling is an operation that reduces the resolution of a matrix. Also known as
a folding operation, it involves organizing the input data into subgroups and
aggregating each subgroup, thereby reducing the dimensionality of the input
data. Most commonly, the elements are aggregated using an averaging
function (mean pooling) or maximization (max pooling).

Privacy preserving neural networks

* The prediction phase using neural networks boils down to a sequence of
linear and nonlinear transformations.

e Linear transformations consist of matrix multiplication and addition.

* Nonlinear transformations involve applying activation functions or pooling
operations.

* Therefore, to make the entire inference process privacy-preserving, it is
sufficient to make the operations of matrix multiplication and addition, as
well as activation functions and pooling operations, privacy-preserving.

Secure Multi-party computation (MPC)

Secure multi-party computation (MPC)

e Secure multi-party computation (MPC) is a /?
technique that allows 7 independent (Xs)
participants to execute an arbitrary algorithm €,

F(xy,...,x,) in such a way that none of them
learns anything about the input data of the F(X, Xy 15 ><)
1 ¢ (3' y

other participants.
=) ((jn '82‘33'3'4)

* For our purposes, we will focus on the case
where only two parties (a client and a server)
participate in executing the algorithm . This X0 g
specific case is called secure two-party (Xw"jﬂ) — ”31)
computation (2PC). P,

Secure two-party computation (2PC)

 The simplest way to execute the algorithm

[so that neither party learns anything
about the other party’s input data is to
introduce a trusted third party (TTP), which

receives the input data from both

participants, executes the functionality £,
and returns the computation result.

Secure two-party computation (2PC)

* |Introducing a trusted third party Is
problematic for several reasons, the
most important being the often
unacceptable assumption regarding the
actual honesty of the TTP. Therefore,
this Is an assumption we strive to avoid
at all costs when designing trustworthy
information systems.

 2PC addresses this problem by
enabling the same functionality without
the helpofa TTP.

N

%xv%?)

X4

ST ALICH

0%

2

1R

(?;’— Xy 2 % 8"5

0-%

Tumo

Secure two-party computation (2PC)

\?\ / > Fypo(ab) = ;{\
: \y ‘ "
\\\ *
O O
/\

/\ /\ /\

Server Client Client

Secure two-party computation (2PC)

Garbled Circuit (GC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).

Secure two-party computation (2PC)

Garbled Circuit (GC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).

He proposed a Yao’s Millionaires Problem which states: "Two millionaires wish to know
who Is richer without revealing their actual wealth.”

So the goal is to compute a > b where a is the first party’s private input and b is the
second party’s private input.

fla,b)y=a >>b

Secure two-party computation (2PC)

Yao’s Millionaires Problem

To simplify the example, let’s assume that the numbers a and b represent the number
of digits in each student’s wealth, and that the maximum number of digits is 4. Let’s

call a as Server, b as Client. The domain of the function Fis X = 1,2,3.4, and the
codomainis Y = {1,0}, where 1 represents true and 0 represents false.

In the first step, one of the parties (let’s assume it’s the server) creates a lookup table
of all possible evaluations of the function F, i.e.,

(F) = (F(1,1) = 1,F(1,2) = 0,..., F(4,4) = 1).

Evaluating the function f(a, b) = a > b represented in the form of a table (F')
involves retrieving the corresponding row from the column (F’), for the values a and

D.

A A B B W W W W NDNMNMNDNDMNDNN-—-2A -2 =2 =9

A W0 NN =2 B WON =2 B ODN =2 B wwDdhd =@

g

e e e == e S = S = S s B e SR = S = S e S e S o S

Yao’s Millionaires Problem

To create an unconscious version of the function F represented in the form of the
table (F’), the server encrypts the table using randomly generated keys for each
value of a and b. Specifically, for each value a € X and b € X, the server assigns a

strong pseudorandom key k5 € 0,1* and k, € 0,1, where k is the security
parameter indicating the bit length of the encryption key.

This creates a total of | X | + | X| = 8 keys (k{V, k), k&, k&P, kU, k@, k™), k)
used to encrypt the function F result for each combination of arguments a and b. Let
Eka’kb(-) be a symmetric encryption function that is parameterized by two encryption

keys: the server key k, for value a, and the client key k;, for value b. Encryption with
two keys can be implemented in several ways; one approach is double encryption—
first with the server’s key, and then with the client’s key. Formally, this is represented

as Ekaakb(-) = Ekb(Eka().

We denote the encrypted table (F') as E({(F'))

A~ B BB B WO W W W NN N DNNDN

Secure two-party computation (2PC)

A WO N = B WOODN = B 0O =2 B 0o = @

Q

g

e e T e == T = S~ S = S e S e SR = S = S e B e B e S =

Yao’s Millionaires Problem

The table prepared by the server is almost ready to be sent to the
client. Almost, because if the client received the table in this form,

they could deduce both a and b based on the specific row of the
table. Therefore, the final modification is to apply a random

permutation so that the client cannot deduce the value of a. This
results in the table Perm(E({F’)))

At this point, the table is ready. The server sends the table to the
client along with the key kc(l’), where i is the value chosen by the
server. Let’s assume that this value is i = 4, so the server sends the
key k'Y to the client.

A A B B WO W W W DNNDNMDNMDMDD

A WO N 2 B WODN = B WO -2 BN = &

Q

E

e e e e T == T e S = S = S e S e SR = S S e S e B e R

Secure two-party computation (2PC)

Yao’s Millionaires Problem

Note that the key kc(f) itself is a random bit string that carries no information. It
does not allow decryption of any row in the table and does not provide any clue
about the server’s input. The obliviousness of the computation is achieved only
In the next step, which proceeds as follows.

The server conducts an Oblivious Transfer (OT) procedure with the client,
allowing the client to choose one key from the set of offered keys

k(l) k2 k(3) k(4) in such a way that the server does not learn which key was
chosen and the client learns nothing about the other keys besides the one they
selected. In our example, let’s assume the client’s wealth has a digit count of

J = 3, so the client selects the key k,§3).

At this point, the client has all the necessary elements to reconstruct the value of
the function F(a, b). Combined with the previously received key k(4) the client
can decrypt only the row encrypted with both keys k(4) and k%, WhICh is the
second row with the value Ey« 3(1). The client decrypts the row as

Ek(4),k,§3)(Ek(4),k1§3)(1)) = 1, obtaining a positive value that indicates that the
server’s wealth is greater, i.e., F(4,3) =4 > 3.

A B B B WO W W W DN DNNMDNMD

A WO N =2 B ODN 2 B O =2 BOODdNN - TF

Q

Secure two-party computation (2PC)

E

I e e e == e S S = S e B e SR = S S s B s B S

E((F))
By (1)
12 ko Ky (0)
Ekf,"',kﬁf” (0)
1 ko k" (0)
Ek,‘?',kf}’ (1)
1 ke Ky (1)
B, ,0(0)
E ks Ky (0)
EA-L“',A»;” (1)
E ke ke (1)
E ke Ky (1)
By 10(0)
E,\.g;l»’,\,;f) (1)
E ko gy (1)
Ekf,“v',kjj" (1)
By 0 (1)

Secure two-party computation (2PC)

Function as a lookup problem

» The size of the tableis | X | X | Y]

- For two uint32’s the size of the table is |uint32 | X |uint32 | = 277 x 232 = 264

* Each value encoded on 4 bytes

. 20% % 4pytes = too large

Secure two-party computation (2PC)

Function as a lookup problem

» The size of the tableis | X | X | Y]
- For two uint32’s the size of the table is |uint32 | X |uint32 | = 277 x 232 = 264

* Each value encoded on 4 bytes

. 20% % 4pytes = too large

But, for a small domains it works fine

Function as a lookup problem

Logic gates have a domain size of 4 = |{0,1}| x [{0,1}.

We can apply the lookup table technique to a sequence of logic
gates, without blowing out the table size.

Thanks to Church Theorem we know that every algorithm can be
represented as

 Turing machine
* RAM machine

* Logic gate network

As a result we can represent any algorithm via logic gate network.

Then by representing them as an encrypted lookup table compute
MPC, and we get Yao’s Garbled Circuit (GC) technique.

K

k1]l0

k3|0

Secure two-party computation (2PC)

kalI1

k3]|0

o O = O
—_— — — —

k|1

Al

k4]0

FIGURE 22.2. A garbled circuit

Garbled Circuit (GC) technique

* |In the GC protocol, the algorithm £ is represented in the form of a logical

circuit C, which consists of a set of logic gates G = g, &5, ..., &,,,, connected
by wires W = w,w,, ..., w . Each gate g; is a function that takes values from

two input wires and returns a value on the output wire. For example, let gor
be an OR gate, with input wires w, and w,, and an output wire w;. The gate

2oR represents the function wy < gor(w;, w,), such that

e 0« gor(0,0), I « gor(0,1), 1 « gor(1,0), and 1 « gor(1,1).

Garbled Circuit (GC) technique

« The functionality F' that we want to execute obliviously must be converted into a logical circuit Cr, or more
specifically, a netlist, which is then garbled using the GC protocol.

« The transformation of functionality I into a netlist is a common method in digital circuit design. It can be done
natively using languages such as Verilog or VHDL, or by using HLS (high-level synthesis) tools that allow synthesis
from high-level languages such as C (e.g., SPARK, CBMC-GC) or Python (e.g., PandA). This process results in a
hardware description of the logic circuit in an HDL (Hardware Description Language) format, which allows for the
creation of a simplified netlist describing the components of the circuit and the connections between them.

* Afterwards, the netlist created in this way can be executed obliviously using the GC protocol.

* There are tools that facilitate these transformations. Some of them take an HDL hardware description of a logic
circuit as input, such as: TinyGarble, ABY

» Others provide a full set of tools, from a programming language to a runtime environment, such as: MP-SPD/Z,
MPyC, EzPC, EMP-Toolkit

* More https://qgithub.com/MPC-SoK/frameworks

https://github.com/esonghori/TinyGarble
https://github.com/encryptogroup/ABY
https://github.com/data61/MP-SPDZ
ttps://github.com/lschoe/mpyc/
https://github.com/mpc-msri/EzPC
https://github.com/emp-toolkit
https://github.com/MPC-SoK/frameworks

Neural network inference is all about matrix multiplications and activation
functions

* We know how to convert any algorithm into an unconscious version using the GC protocol. We also know how inference is
performed using neural networks. What remains is to combine the knowledge to create an unconscious neural network
prediction.

* Prediction using a neural network can be modeled as a recursive sequence of matrix multiplication and addition, along with
activation/pooling functions:

: 2 =W, %f_ (... f,(W,*X+B,)...)+B,

* The goal of unconscious neural networks is to compute the value 7 in such a way that the client learns nothing about
(W, W,,...,W;)and (B, B,, ..., B;), while the server learns nothing about X and z.

» To achieve such isolation, we substitute the inputs of each party into the functional model F,,~(a, b), where a is the private

input of one party and b is the private input of the other party. In our case, a = X and
b=((W,W,,...W;),(By,B,, ...,B;)). As a result, we have:

o FypclX, (W, Way ..., W), (B, Boy....BO) =W, *f,_ (... {(W,*X+B,))...)+B,

Oblivious Neural Network pipeline

Klient Serwer

l

) O
Df}‘%

Netlista

—>

Dane wejsciowe

Utworzenie /
tablic GC d
2

Wykonanie
protokotu GC

NieSwiadome
transfery (OT)

|

Realizacja

s/

predykcji

dszyfrowanie
5

S

Zaszyfrowana

Predykcja

predykcja

e e

ynteza uktadu
Ioglcznego

Architektura modelu

Wyuczone wagi
modelu

source: https://stan.bar/papers/ONN-KASKBook2022.pdf

Sie¢ neuronowa

Performance

Table 3: Comparison of secure deep learning frameworks, their characteristics, and performance results for classifying one
image from the MNIST dataset in the LAN setting.

S fil ks Non-linear Activation | Classification Timing (s) | Communication (MB) | Classification
and Pooling Functions | Offline | Online | Total | Offline | Online | Total | Accuracy
Microsoft CryptoNets [36] Leveled HE X - - | 297.5 - - | 372.2 98.95 %
DeepSecure [77] GC v - - | 9.67 - - 791 99 %
SecureML [67] Linearly HE, GC, SS X 4.70 0.18 | 4.88 - - - 93.1%
MiniONN (Sqr Act.) [62] Additively HE, GC, SS X 0.90 0.14 | 1.04 3.8 12 | 15.8 97.6 %
MiniONN (ReLu + Pooling) [62] | Additively HE, GC, SS / 3.58 5.74 | 9.32 209 | 636.6 | 657.5 99 %
EzPC [29] GC, Additive SS v - - 5.1 - - 501 99 %
Chameleon (This Work) GC, GMW, Additive SS v 1.25 099 | 2.24 5.4 5.1 | 10.5 99 %

Table 4: Classification time (in seconds) and communication Table 5: Classification ti i ds) and :cati
costs (in megabytes) of Chameleon for different batch sizes able o: Llassilication time (1n seconds) and commaurnication

of the MNIST dataset in the WAN setting (100 Mbit/s band- costs (in gigabytes) of secure deep learning frameworks for
one image from the CIFAR-10 dataset in the LAN setting.

width, 100 ms round-trip time).

Classification Time (s) Communication (MB) Classification Time (s) Communication (GB)
. Framework
Batch Size | Offline | Online | Total | Offline | Online | Total Offline | Online | Total | Offline | Online | Total
1 4.03 2 85 6.88 7 8 51 12.9 MiniONN _[Q] 472 72 544 6.23 3.05 0.28
10 | 10.00 | 10.65 | 20.65 78.4 50.5 | 128.9 EzPC [29] - - | 265.6 - - | 40.63
100 69 38 84.09 | 153.47 784.1 5053 | 1289 4 Chameleon (This Work) 22.97 29.7 | 52.67 1.21 1.44 | 2.65

Source: https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10

https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10

LLM

* Privacy-Preserving Large Language Models

(PPLLMs)

 PermLLM: Private Inference of Large

Language Models within 3 Seconds under

WAN

 Faster Lookup Table Evaluation with
Application to Secure LLM Inference

len=6

Time (20ms/100Mbps)

200
E 150
()
£ 100
|_
50 A
0 -
0 5 10
Tokens

15

20

TABLE V: End-to-end comparisons with the existing private
inference frameworks. The numbers of Iron and CipherGPT
are taken from their papers. The timings of SIGMA include both
the key-transmission and online inference, which are estimated
based on our bandwidth. GPT2 models generated 1 token.
Frameworks marked with “*” are not 2PC framework.

Model

Framework

Total Time (min)

Comm.

LAN WAN (GB)
Iron ~ 34 — 76.50
BOLT 8.89 16.90 59.61
BERT-base SIGMA™ ~ ~ 12 34.37
128 input tokens MPCFormer™ 2.79 5.09 12.08
PUMA* 2.19 4.55 10.77
BumbleBee 2.55 4.86 6.40
Iron ~ 92 - ~ 220
BERT-large SIGMA* ~ 12 ~ 31 92.75
MPCFormer™ 4.52 9.81 32.58
128 input tokens PUMA* 4.02 9.06 27.25
BumbleBee 6.19 9.81 16.37
SIGMA* ~ ~ 10 28.71
GPT2-base MPCFormer™ 1.10 2.85 7.32
64 input tokens PUMA* 1.20 2.42 7.82
BumbleBee 1.48 2.05 2.77
len=15 —— |len=37 —%— len=62
Time (10ms/1Gbps) Communication size
80 1 1.25 A
60 - 3 1.00 -
2
0.75 A
40 2
E 0.50 -
201 S 0.25 A
0 A 0.00 A !

0 5

10

15 20
Tokens

5

10

15

Tokens

20

Figure 2: Time consumption and communication size of the ChatGLM-6B private inference.

https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://eprint.iacr.org/2024/1093.pdf
https://eprint.iacr.org/2024/1093.pdf

State of the art

Iron BOLT w/o W.E. BOLT w/ W.E.

Component | Comm. (MB) | Round Comm. (MB) Round Comm. (MB) Round
Linear 1 4844.14 38 7.06 686.1 X 2 19 X 3.18 1524.7 x 2 19 %
: Softmax XV 4918.38 36 0.88 497.6 X 2 18 % 2.82 1741.6 x 2 18 %
* SIRNN (M icrosoft ResearCh) Linear 2 47.65 2 4.51 10.6 % 2 1% 2.26 15.0% 2 1%
Linear 3 95.40 2 9.01 10.6 % 2 1 X 4.50 21.2% 2 1%
° Cheetah (A||baba Group) Linear 4 95.21 2 13.52 7.0 2 1% 6.77 14.1x% 2 1%
Softmax 3596.32 252 1447.65 2.5% 232 1.1X% 450.74 8.0% 229 1.1X%
: . : : GELU 7960.00 256 1471.67 5.4% 88 2.9 % 776.84 10.2 % 88 2.9%
e CipherGPT (Zhejiang University, Ant LayerNorm 871.46 218 599.40 15% | 220 099x | 290.55 30x | 220 0.99x
G rou p) Tanh 20.67 150 16.64 1.2X% 110 1.4X% 16.64 1.2 110 1.4%
end-to-end 280.99 GB 13663 59.61 GB 471x | 10509 1.30x | 25.74 GB 10.91x | 10901 1.25x%

« BumbleBee (Ant Group, Alibaba Group, TABLE 3: Communication cost and rounds comparing Iron with BOLT. The costs of the components are for one layer, and
Zhejiang University) there are 12 layers in BERT.

 CraterLake (Massachusetts Institute of . . o . o
Technology) Table 1: Comparing the runtime (sec) and communication (MB) costs of our matrix multiplication

and non-linear protocols with SOTA

* Iron (U N IVGFSIty of EleCt ronic Science Matrix Multiplication Non-Linear Protocols
and Technology of China, Nanyang ,
. . . Dims=(32, 8, 16) | (128, 64, 128) | (128, 768, 768) Softmax LayerNorm GELU
Technological University) Methods Methods
Time Comm. | Time Comm.| Time Comm. Time Comm.| Time Comm. | Time Comm.
 BOLT (Carnegie Mellon University UC Ours | 0006 011 |0066 174 | 171 1545 | Ours | 478 206265 | 234 102435| 030 10.07
Berkeley, Technical University of 016 279 | 077 1478 | 6.10 13437 795 34771 | 416 18442 | 038 14.07
D arm St a d.t) Cheetah SIRNN
26x) (25x) |[(11x) (8x) (3x) (8%) (1.7x) (1.7x) | (1.8x) (1.8x) |[(1.3x) (1.4%)
SIRNN 0.04 1.34 1.59 70.08 |[110.33 4920.08 MP-SPDZ 297.75 172,837 | 202.75 101,642 | 15.34 7.,908.69
(6x) (12x) |[(23x) (@40x) | (64x) (318x) (62x) (837x) | (86x) (992x) | (51x) (785x%)

Voting

foreachiinn

vote Ii T

encryption key

Blockchain
(bulletin board)

Setup

1any

>

Fa(Xq, ..., X, votes)

encryption key

~la—

results

Blockchain
(bulletin board)

voter;

voter,

voter, voterp_1

voter, voter,.

Fy(xy,...,%,) = DerivePubKey(DerivePrivKey(S5(xy,.. ., x,))) Fo(Xq, ..., X, votes) = Count(Decrypt(votes, DerivePrivKey(SS(xy, ..., x,))))

References

 Smart, Nigel P., and Nigel P. Smart. Cryptography made simple. Springer, 2016.

* Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party computation.” _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.
« Mann, Zoltan Adam, et al. "Towards practical secure neural network inference: the journey so far and the road ahead." ACM Computing Surveys 56.5 (2023): 1-37.

» Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy." International conference on machine learning. PMLR, 2016.
 Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine learning." 2077 IEEE symposium on security and privacy (SP). IEEE, 2017.

 Liu, Jian, et al. "Oblivious neural network predictions via minionn transformations." Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2017.

* Riazi, M. Sadegh, et al. "Chameleon: A hybrid secure computation framework for machine learning applications." Proceedings of the 2018 on Asia conference on computer and communications
security. 2018.

» Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "{GAZELLE}: A low latency framework for secure neural network inference." 27th USENIX Security Symposium (USENIX
Security 18). 2018.

* Riazi, M. Sadegh, et al. "{XONN}:{XNOR-based} Oblivious Deep Neural Network Inference." 28th USENIX Security Symposium (USENIX Security 19). 2019.
 Chandran, Nishanth, et al. "EzPC: programmable, efficient, and scalable secure two-party computation for machine learning." Cryptology ePrint Archive (2017).
e Mishra, Pratyush, et al. "Delphi: A cryptographic inference service for neural networks." 29th USENIX Security Symposium (USENIX Security 20). 2020.
 Kumar, Nishant, et al. "Cryptflow: Secure tensorflow inference." 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

* Lu, Wen-jie, et al. "Bumblebee: Secure two-party inference framework for large transformers." Cryptology ePrint Archive (2023).

* Hou, Xiaoyang, et al. "Ciphergpt: Secure two-party gpt inference." Cryptology ePrint Archive (2023).

