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ML as a Service

• Client delegates the ML service 
to service provider (Server)


• Separation of specialization


• Cost reductions



Use case
Medical prognosis using machine learning



Use case
Medical prognosis using machine learning

Problems:

- The ML Provider cannot share the model as it may be proprietary

- The laboratory can not send input data to the ML Provide 

because of legal prohibitions or complex agreements.

- Privacy risks



Use case
Medical prognosis using machine learning

Is it possible to do this computation without the 
radiology lab ever sharing the patient’s sensitive data 
and the ML provider sharing its proprietary model?



Use case
Estonian students study

Source: Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.



Use case
Private set intersection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf  
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

CSAM Detection enables Apple to accurately 
identify and report iCloud users who store 
known Child Sexual Abuse Material (CSAM) in 
their iCloud Photos accounts. Apple servers 
flag accounts exceeding a threshold number of 
images that match a known database of CSAM 
image hashes so that Apple can provide 
relevant information to the National Center for 
Missing and Exploited Children (NCMEC). This 
process is secure, and is expressly designed to 
preserve user privacy.

Apple CSAM Detection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf


Use case
Private set intersection

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf  
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

Apple CSAM Detection


Password Monitoring


Communication Safety

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf


Other applications

• Secure machine learning


• privacy-preserving network security monitoring (Burkhart et al., 2010)


• privacy-preserving genomics (Wang et al., 2015a; Jagadeesh et al., 2017)


• Contact discovery (Li et al., 2013; De Cristofaro et al., 2013)


• Spam filtering on encrypted email (Gupta et al., 2017)


• Internet Voting, Credit score, everything which involves sensitive data…



Problem statement

• Server learns nothing about Client's input;


• Client learns nothing about the Server’s model;


• Yet the predictions are correct.



Solution: 
Oblivious Neural Networks
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Oblivious Neural Networks 

Privacy Preserving Machine Learning



Privacy Preserving Machine Learning

• The solution requires drawing knowledge from four fields of science


• Machine learning


• Computation theory, 


• Digital systems theory, 


• and Cryptography, 



Neural Networks

• A neural network is a pipeline of layers. Each layer receives an input signal, 
processes it, and generates an output signal, which becomes the input for the 
next layer. The first layer receives the input data x, and the output signal of 
the last layer is the prediction result C(x, w).


• A typical neural network layer performs a linear transformation (matrix 
multiplication and addition), followed by a nonlinear transformation (an 
activation function, and sometimes pooling to reduce data resolution). 
Predictions using neural networks can be represented as a pipeline of 
transformations:


x → f1 → a1 → . . . → fn → an → y



Neural Networks

• The goal of these transformations is to distort the 
input data space in such a way that it becomes 
linearly separable—that is, to create a line (if the 
input data is described in two dimensions), a 
plane (in three dimensions), or a hyperplane (in n 
+ 1 dimensions) that can divide the input set into 
two subsets. 


• Figure 7.2 illustrates the transformations of each 
layer of a sample neural network. Achieving linear 
separability of data (into green and red regions) is 
possible through a sequence of linear and 
nonlinear transformations. Linear transformations 
allow for rotating, tilting, and stretching the 
space, while nonlinear transformations enable 
deformation of the space.



Neural Networks
Linear transformations

• Matrix multiplication and addition are the most commonly used linear 
transformations in neural networks:


• 


• where:


• x is the input vector;


• W is the weight matrix;


• b is the bias vector;


• y is the output vector.

y := W ⋅ x + b



Neural Networks
Linear transformations

• Convolution is a linear transformation that allows calculating the dot product 
between the weight tensor (filter, also called kernel) and an element of the 
matrix along with its neighboring elements. This process is repeated by 
sliding the filter over the input matrix. In practice, convolutions are 
transformed into a form of matrix multiplication and addition, which improves 
efficiency [12], similar to the previous equation, with the difference that both 
the input and the bias are matrices: Y := W · X + B



Neural Networks
Non-linear transformations

• Neural networks use nonlinear transformations to model the nonlinear relationship between the input and output space.


• Activation functions can be classified into three categories.


• Piecewise Linear Activation Function. This type of function can be represented as a set of  linear functions , where  is constrained by a lower and 
upper limit for each interval. Examples of such functions are:


• Rectified Linear Units (ReLU): 


• Leaky ReLU: 


• Maxout: 


• Smooth (Regular) Activation Function 

• Sigmoid (logistic): 


• Hyperbolic tangent (tanh): 


• Softplus: 


• Softmax is most commonly used as the final layer of a neural network to determine the probability distribution for classification. The function is defined as


•

n fi(x) = aix + bi x

f(x) = max(0,x)

f(x) = max(0,x) + amin(0,x)

f(x) = max(y1, …, yn)

f(x) = 1
1 + e−x

f(x) = e2x − 1
e2x + 1

f(x) = log(ex + 1)

softmaxi(x) = exi

∑k exk



Neural Networks
Non-linear transformations

• Pooling is an operation that reduces the resolution of a matrix. Also known as 
a folding operation, it involves organizing the input data into subgroups and 
aggregating each subgroup, thereby reducing the dimensionality of the input 
data. Most commonly, the elements are aggregated using an averaging 
function (mean pooling) or maximization (max pooling).



Privacy preserving neural networks

• The prediction phase using neural networks boils down to a sequence of 
linear and nonlinear transformations. 


• Linear transformations consist of matrix multiplication and addition.


• Nonlinear transformations involve applying activation functions or pooling 
operations. 


• Therefore, to make the entire inference process privacy-preserving, it is 
sufficient to make the operations of matrix multiplication and addition, as 
well as activation functions and pooling operations, privacy-preserving.



Secure Multi-party computation (MPC)



Secure multi-party computation (MPC)

• Secure multi-party computation (MPC) is a 
technique that allows  independent 
participants to execute an arbitrary algorithm 

 in such a way that none of them 
learns anything about the input data of the 
other participants.


• For our purposes, we will focus on the case 
where only two parties (a client and a server) 
participate in executing the algorithm . This 
specific case is called secure two-party 
computation (2PC).

n

F(x1, …, xn)



Secure two-party computation (2PC)

• The simplest way to execute the algorithm 
 so that neither party learns anything 

about the other party’s input data is to 
introduce a trusted third party (TTP), which 
receives the input data from both 
participants, executes the functionality , 
and returns the computation result.

F

F



Secure two-party computation (2PC)

• Introducing a trusted third party is 
problematic for several reasons, the 
most important being the often 
unacceptable assumption regarding the 
actual honesty of the TTP. Therefore, 
this is an assumption we strive to avoid 
at all costs when designing trustworthy 
information systems.


• 2PC addresses this problem by 
enabling the same functionality without 
the help of a TTP.



Secure two-party computation (2PC)



Secure two-party computation (2PC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The 
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).

Garbled Circuit (GC)



Secure two-party computation (2PC)

For many years, 2PC remained largely a theoretical pursuit among cryptographers. The 
first practical solution is Yao’s Garbled Circuit (GC) (Yao 1982).


He proposed a Yao’s Millionaires Problem which states: "Two millionaires wish to know 
who is richer without revealing their actual wealth.”


So the goal is to compute  where  is the first party’s private input and  is the 
second party’s private input. 


a ≥ b a b

f(a, b) = a ≥ b

Garbled Circuit (GC)



Secure two-party computation (2PC)

To simplify the example, let’s assume that the numbers  and  represent the number 
of digits in each student’s wealth, and that the maximum number of digits is 4. Let’s 
call  as Server,  as Client. The domain of the function  is , and the 
codomain is , where 1 represents true and 0 represents false.


In the first step, one of the parties (let’s assume it’s the server) creates a lookup table 
of all possible evaluations of the function , i.e., 

.


Evaluating the function  represented in the form of a table  
involves retrieving the corresponding row from the column , for the values  and 

.

a b

a b F X = 1,2,3,4
Y = {1,0}

F
⟨F⟩ = ⟨F(1,1) = 1,F(1,2) = 0,…, F(4,4) = 1⟩

f(a, b) = a ≥ b ⟨F⟩
⟨F⟩ a

b

Yao’s Millionaires Problem



Secure two-party computation (2PC)

To create an unconscious version of the function  represented in the form of the 
table , the server encrypts the table using randomly generated keys for each 
value of  and . Specifically, for each value  and , the server assigns a 
strong pseudorandom key  and , where  is the security 
parameter indicating the bit length of the encryption key.


This creates a total of  keys  
used to encrypt the function  result for each combination of arguments  and . Let 

 be a symmetric encryption function that is parameterized by two encryption 
keys: the server key  for value , and the client key  for value . Encryption with 
two keys can be implemented in several ways; one approach is double encryption—
first with the server’s key, and then with the client’s key. Formally, this is represented 
as .


We denote the encrypted table  as 

F
⟨F⟩

a b a ∈ X b ∈ X
ka ∈ 0,1κ kb ∈ 0,1κ κ

|X | + |X | = 8 (k(1)
a , k(2)

a , k(3)
a , k(4)

a , k(1)
b , k(2)

b , k(3)
b , k(4)

b )
F a b

Eka,kb
( ⋅ )

ka a kb b

Eka,kb
( ⋅ ) = Ekb

(Eka
( ⋅ ))

⟨F⟩ E(⟨F⟩)

Yao’s Millionaires Problem



Secure two-party computation (2PC)

The table prepared by the server is almost ready to be sent to the 
client. Almost, because if the client received the table in this form, 
they could deduce both  and  based on the specific row of the 
table. Therefore, the final modification is to apply a random 
permutation so that the client cannot deduce the value of . This 
results in the table 


At this point, the table is ready. The server sends the table to the 
client along with the key , where  is the value chosen by the 
server. Let’s assume that this value is , so the server sends the 
key  to the client.

a b

a
Perm(E(⟨F⟩))

k(i)
a i

i = 4
k(4)

a

Yao’s Millionaires Problem



Secure two-party computation (2PC)

Note that the key  itself is a random bit string that carries no information. It 
does not allow decryption of any row in the table and does not provide any clue 
about the server’s input. The obliviousness of the computation is achieved only 
in the next step, which proceeds as follows. 


The server conducts an Oblivious Transfer (OT) procedure with the client, 
allowing the client to choose one key from the set of offered keys 

 in such a way that the server does not learn which key was 
chosen, and the client learns nothing about the other keys besides the one they 
selected. In our example, let’s assume the client’s wealth has a digit count of 

, so the client selects the key .


At this point, the client has all the necessary elements to reconstruct the value of 
the function . Combined with the previously received key , the client 
can decrypt only the row encrypted with both keys  and , which is the 
second row with the value . The client decrypts the row as 

, obtaining a positive value that indicates that the 
server’s wealth is greater, i.e., . 

k(4)
a

k(1)
b , k(2)

b , k(3)
b , k(4)

b

j = 3 k(3)
b

F(a, b) k(4)
a

k(4)
a k(3)

b
Ek(4)

a ,k(3)
b

(1)
Ek(4)

a ,k(3)
b

(Ek(4)
a ,k(3)

b
(1)) = 1

F(4,3) = 4 ≥ 3

Yao’s Millionaires Problem



Secure two-party computation (2PC)

• The size of the table is 


• For two uint32’s the size of the table is 


• Each value encoded on 4 bytes


•

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem



Secure two-party computation (2PC)

• The size of the table is 


• For two uint32’s the size of the table is 


• Each value encoded on 4 bytes


• 


But, for a small domains it works fine

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem



Secure two-party computation (2PC)

Logic gates have a domain size of 4 = |{0,1}| x |{0,1}|.

We can apply the lookup table technique to a sequence of logic 
gates, without blowing out the table size.


Thanks to Church Theorem we know that every algorithm can be 
represented as

• Turing machine

• RAM machine

• Logic gate network


As a result we can represent any algorithm via logic gate network. 

Then by representing them as an encrypted lookup table compute 
MPC, and we get Yao’s Garbled Circuit (GC) technique.

Function as a lookup problem



Garbled Circuit (GC) technique

• In the GC protocol, the algorithm  is represented in the form of a logical 
circuit , which consists of a set of logic gates , connected 
by wires . Each gate  is a function that takes values from 
two input wires and returns a value on the output wire. For example, let  
be an OR gate, with input wires  and , and an output wire . The gate 

 represents the function , such that


•

F
C G = g1, g2, …, gm

W = w1, w2, …, wn gi
gOR

w1 w2 w3
gOR w3 ← gOR(w1, w2)

0 ← gOR(0,0), 1 ← gOR(0,1), 1 ← gOR(1,0), and 1 ← gOR(1,1) .



Garbled Circuit (GC) technique

• The functionality  that we want to execute obliviously must be converted into a logical circuit , or more 
specifically, a netlist, which is then garbled using the GC protocol.


• The transformation of functionality  into a netlist is a common method in digital circuit design. It can be done 
natively using languages such as Verilog or VHDL, or by using HLS (high-level synthesis) tools that allow synthesis 
from high-level languages such as C (e.g., SPARK, CBMC-GC) or Python (e.g., PandA). This process results in a 
hardware description of the logic circuit in an HDL (Hardware Description Language) format, which allows for the 
creation of a simplified netlist describing the components of the circuit and the connections between them.


• Afterwards, the netlist created in this way can be executed obliviously using the GC protocol.


• There are tools that facilitate these transformations. Some of them take an HDL hardware description of a logic 
circuit as input, such as: TinyGarble, ABY


• Others provide a full set of tools, from a programming language to a runtime environment, such as: MP-SPDZ, 
MPyC, EzPC, EMP-Toolkit


• More https://github.com/MPC-SoK/frameworks

F CF

F

https://github.com/esonghori/TinyGarble
https://github.com/encryptogroup/ABY
https://github.com/data61/MP-SPDZ
ttps://github.com/lschoe/mpyc/
https://github.com/mpc-msri/EzPC
https://github.com/emp-toolkit
https://github.com/MPC-SoK/frameworks


Neural network inference is all about matrix multiplications and activation 
functions

• We know how to convert any algorithm into an unconscious version using the GC protocol. We also know how inference is 
performed using neural networks. What remains is to combine the knowledge to create an unconscious neural network 
prediction.


• Prediction using a neural network can be modeled as a recursive sequence of matrix multiplication and addition, along with 
activation/pooling functions:


• 


• The goal of unconscious neural networks is to compute the value  in such a way that the client learns nothing about 
 and , while the server learns nothing about  and .


• To achieve such isolation, we substitute the inputs of each party into the functional model , where  is the private 
input of one party and  is the private input of the other party. In our case,  and 

. As a result, we have:


•

z := WL * fL−1( . . . f1(W1 * X + B1) . . . ) + BL

z
(W1, W2, …, WL) (B1, B2, …, BL) X z

F2PC(a, b) a
b a = X

b = ((W1, W2, …, WL), (B1, B2, …, BL))

F2PC(X, ((W1, W2, . . . , WL), (B1, B2, . . . , BL))) = WL * fL−1( . . . f1(W1 * X + B1) . . . ) + BL



Oblivious Neural Network pipeline

source: https://stan.bar/papers/ONN-KASKBook2022.pdf



Performance

Source: https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10

https://dl.acm.org/doi/pdf/10.1145/3196494.3196522#page=10


LLM

• Privacy-Preserving Large Language Models 
(PPLLMs)


• PermLLM: Private Inference of Large 
Language Models within 3 Seconds under 
WAN


• Faster Lookup Table Evaluation with 
Application to Secure LLM Inference

https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://www.researchgate.net/profile/Mohammad-Raeini/publication/372607103_Privacy-Preserving_Large_Language_Models_PPLLMs/links/64d0588540a524707b9c1efe/Privacy-Preserving-Large-Language-Models-PPLLMs.pdf
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://arxiv.org/pdf/2405.18744
https://eprint.iacr.org/2024/1093.pdf
https://eprint.iacr.org/2024/1093.pdf


State of the art

• SIRNN (Microsoft Research)


• Cheetah (Alibaba Group)


• CipherGPT (Zhejiang University, Ant 
Group)


• BumbleBee (Ant Group, Alibaba Group, 
Zhejiang University)


• CraterLake (Massachusetts Institute of 
Technology)


• Iron (University of Electronic Science 
and Technology of China, Nanyang 
Technological University)


• BOLT (Carnegie Mellon University UC 
Berkeley, Technical University of 
Darmstadt)



My Work
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