
Stanisław Barański
stanislaw.baranski@pg.edu.pl
https://stan.bar

Blockchain
2. Decentralised applications (dapps)

15.12.2022

https://stan.bar

Agenda

Wallets, addresses, mnemonics

How to update the state — three approaches to building dapps

Case Study: Internet Voting on blockchain

Comparison

📌Keys, Addresses, Wallets

curve: secp256k1 y2=x3+7 (mod p), where p = 2256-232-29-28-27-26-24-1

Mnemonic words
Mnemonic phrase is generated as follows:

1. Generate random sequence of 128-256 bits

2. Create checksum of the random bits by taking first 32bits of its SHA256
hash

3. Checksum is appended to the random sequence

4. Divide the sequence into sections of 11 bits, using those to index a
dictionary of 2048 predefined words

5. Produce 12 or 24 words representing the mnemonic code.

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

Mnemonic words

Hardware/paper/physical wallets

Source: https://www.thecryptomerchant.com/blogs/resources/hardware-wallet-redundancy-strategies

https://www.thecryptomerchant.com/blogs/resources/hardware-wallet-redundancy-strategies

Deterministic wallets
Seed is generated using PBKDF2(Password-Based Key Derivation Function 2)
seed = PBKDF2(PRF: HMAC-SHA512

password: Mnemonic phrase, //UTF-8
Salt: “mnemonic” + User defined password,
iCount: 2048,
dklen: 512) //bits or 64 bytes

Hierarchical deterministic wallets

https://iancoleman.io/bip39/#englishSource: Mastering Bitcoin by Andreas Antonopoulos

https://iancoleman.io/bip39/#english

Blockchain Applications (dapp)
Moving beyond payments

Decentralised Applications (dapp)

• A blockchain application (dapp) is any kind of application which uses blockchain as a storage layer.

• Inheriting all the properties of the blockchain paradigm:

• Decentralisation — no single entity is the owner of our data.

• Immutability — every transaction is recorded forever on a blockchain.

• Transparency — every transaction is publicly visible on the blockchain.

• Verifiability — everyone can verify the correctness of the transaction.

• Security — only valid transactions are allowed to modify the state, every node in the network validates every
transaction.

• Censorship-resistant — everyone willing to interact with the app can do it.

• (Optional) Privacy and/or anonymity — an action made by the actor is unknown and/or an actor of the action is
unknown

📌 Decentralised Applications (dapps)

There are three approaches to building a custom application in the blockchain
paradigm

1. Hack existing blockchain payment transactions (use extra/memo field,
sequence ids, addresses)

2. Non-Turing Complete (NTC) Smart Contracts (Stellar)

3. Turing-Complete (TC) Smart Contracts (EVM, WASM, etc.)

4. Create a dedicated blockchain (Filecoin, Chainlink, ZCash, Lisk,
Substrate)

Transition State Machine
Payment Transaction

 — states

 — payment transaction

 — state transition function

 = {

}

S

T

Apply : S × T → S

Sn+1 ← Apply(Sn, Tn)

Apply(s, t)

ensure(s[tfrom] ≥ tvalue)

s[tfrom] ← s[tfrom] − tvalue

s[tto] ← s[tto] + tvalue

TC smart contracts

 - smart contract codes

T

Sn+1 = Apply(Sn, Tn)

Apply(Sn, Tn) = VM(Sn, Tn)

NTC smart contracts

 - {PAYMENT, CREATE_ACC,
CREATE_TOKEN, CREATE_AN_OFFER,
MANAGE_DATA, etc…}

T

Sn+1 = Apply(Sn, Tn)

Apply(Sn, Tn) = SWITCH(Sn, Tn)

Decentralised Applications
Hack existing blockchain’s transactions

• We have the following variables: inputs,
outputs, extra field (memo)

• Business logic needs to be interpreted on
the client side, blockchain is just data
storage.

• Examples:

• https://proofofexistence.com/

• Colored coins (tokens)

• Internet voting
Source: Mastering Bitcoin by Andreas Antonopoulos

https://proofofexistence.com/
https://allquantor.at/blockchainbib/pdf/rosenfeld2012overview.pdf

Proof of Existence
Hack existing blockchain’s transactions

• https://proofofexistence.com/

https://proofofexistence.com/

Decentralised Applications
Turing-Complete (TC) Smart Contracts

• Turing-complete execution, and high expressiveness, but comes at some costs.

• FT: implement interface ERC20

• NFT: implement interface ERC721

• Number of virtual machines: EVM, WASM, Docker (HL Fabric - JVM, Go, Node.js),

• https://solidity-by-example.org/

• Business logic is encoded mostly in the smart contract — “our product is stored in the code on blockchain”

• Software-developer-friendly

• Easiest for innovative projects: ICO, Oracles, Bridges, DAOs, FT, NFTs, zkSNARKs …

• Execution time limit.

• Error-prone - risky.

https://ethereum.org/en/developers/docs/standards/tokens/erc-20
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://chainlist.org/
https://solidity-by-example.org/

Decentralised Applications
Non-Turing Complete (NTC) Smart Contracts

• Some blockchains offer a limited number of transactions

• More expressive than hacking, and less expressive than TC smart contracts.

• Limited, but often sufficient (for some domain of problems) set of operations.

• 1. Take the most promising, exciting, useful smart contracts,

• 2. Standardise them, optimise them, and

• 3. Provide them as standard operations

• Mixed business logic interpretation, both chain- and client-side.

• Stellar Operations https://developers.stellar.org/docs/fundamentals-and-concepts/list-of-operations

• Cardano Marlowe https://docs.cardano.org/marlowe/learn-about-marlowe

• Bitcoin Script https://en.bitcoin.it/wiki/Script

https://developers.stellar.org/docs/fundamentals-and-concepts/list-of-operations
https://docs.cardano.org/marlowe/learn-about-marlowe
https://en.bitcoin.it/wiki/Script

Decentralised Applications
Create a dedicated blockchain

• Turing-complete execution and the highest expressiveness, but it comes at some costs.

• Overcome the execution time limits.

• Great for super innovative projects that can not be executed on EVM/WASM.

• Or just a different approach than any existing Blockchain: Filecoin (PoSt), IOTA (Blockchain
for IoT), Mina (super succinct BC)

• High effort to create a dedicated blockchain

• It lowers the overall security of blockchains—there is a limited amount of computing power
(or any other scarce resource), and creating a new blockchain split the total hash power.

Case study: Internet voting using
blockchain

Proof of Existence
Hack existing blockchain’s transactions

• https://proofofexistence.com/

https://proofofexistence.com/

Voting protocol as a Proof of Existence: naive
Hack existing blockchain’s transactions

Voting protocol as a Proof of Existence: naive
Hack existing blockchain’s transactions

Anonymity ❌

Privacy ❌

Voting protocol as a Proof of Existence: commit-reveal
Hack existing blockchain’s transactions

Voting protocol as a Proof of Existence: commit-reveal
Hack existing blockchain’s transactions

Voting protocol as a Proof of Existence: commit-reveal
Hack existing blockchain’s transactions

Problems:

• Where to publish revealVote transactions? On a
blockchain?

• By revealing, we lose privacy anyway.

• Who manages the list of eligible voters?

• How to prevent multiple votes?

• Who counts the results?

Voting protocol as a Proof of Existence: asymmetric encryption
Hack existing blockchain’s transactions

Voting protocol as a Proof of Existence: asymmetric encryption
Hack existing blockchain’s transactions

Voting protocol as a Proof of Existence
Hack existing blockchain’s transactions

Problems:

• Where to publish revealVote transactions? N/A ✅

• Who counts the results? Voters ✅

• How to prevent multiple votes?

• Who manages the list of eligible voters?

• By revealing, we lose privacy anyway.

Non-Turing Complete (NTC) Smart Contracts

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Issue a limited number of VOTE NFTokens (a number everyone can verify).

Transfer each VOTE token to each eligible voter (everyone can verify that on bc).

Only transactions spending VOTE tokens are counted.

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Problems:

• Who counts the results? Voters ✅

• How to prevent multiple votes? ✅

• Who manages the list of eligible voters? ✅

• By revealing, we lose privacy anyway.

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Problems:

• Who counts the results? Voters ✅

• How to prevent multiple votes? ✅

• Who manages the list of eligible voters? ✅

• By revealing, we lose privacy anyway.

• Organisers know the address of each eligible voter, they can link their identity
with their address and hence, their vote option.

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Split voting into two untrackable stages:

1. Authentication

2. Authorization

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Split voting into two untrackable stages:

1. Authentication

2. Authorization

https://stellot.com

https://stellot.com

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Problems:

• Who counts the results? Voters ✅

• How to prevent multiple votes? ✅

• Who manages the list of eligible voters? ✅

• By revealing, we lose privacy anyway ✅

• Organisers know the address of each eligible voter, they can link their identity
with their address and hence, their vote option ✅

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Problems:

• Who counts the results? Voters ✅

• How to prevent multiple votes? ✅

• Who manages the list of eligible voters? ✅

• By revealing, we lose privacy anyway ✅

• Organisers know the address of each eligible voter, they can link their identity with their address and
hence, their vote option ✅

• How to prevent bribing?

• How to prevent organisers from decrypting the votes before the end of voting?

Turing Complete (NTC) Smart Contracts

Voting protocol
Bribing resistance

Allow casting multiple votes, each time optionally allowing for invalidating the
previous one, in such a way that no one can tell which one is valid; therefore, it
can not be proven to the briber.

Minimum Anti-Collusion Infrastructure (MACI)

https://github.com/privacy-scaling-
explorations/maci/tree/master/specs

https://ethresear.ch/t/minimal-anti-collusion-
infrastructure/5413

https://github.com/privacy-scaling-explorations/maci/tree/master/specs
https://github.com/privacy-scaling-explorations/maci/tree/master/specs
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413
https://ethresear.ch/t/minimal-anti-collusion-infrastructure/5413

Voting protocol
Non-Turing Complete (NTC) Smart Contracts

Problems:

• Who counts the results? Voters ✅

• How to prevent multiple votes? ✅

• Who manages the list of eligible voters? ✅

• By revealing, we lose privacy anyway ✅

• Organisers know the address of each eligible voter, they can link their identity with their address and hence, their
vote option ✅

• How to prevent bribing? ✅

• How to prevent organisers from decrypting the votes before the end of voting?

• Organiser? Is is still dapp?

Dedicated Blockchain

Voting protocol
Turing Complete (NTC) Smart Contracts

Voters generate encryption key using
Distributed key generation (DKG) or
Shamir Secret Sharing (SSS).

Get rid of the organiser (semi-trusted-third
party).

Voters participate in MPC protocol to
compute calculations on encrypted data

Decentralised Applications
Effort to create a dapp

Comparison
Hacking Existing

BC NTC Smart Contract TC Smart Contract Dedicated BC

Limits A few variables of
constant type

Limited number of
operations 8 sec of execution and costly Unlimited

Fee Low and constant Low and constant High and vary on execution Custom

Expressivity Low Medium High Unlimited

Interpretation Client-side Both client- and chain-side Chain-side Chain-side

Effort to
create Low Medium High Enormous

Platforms All blockchains Bitcoin, Stellar, Cardano
EVM (Ethereum, NEAR/Aurora,
BSC), WASM (NEAR, Solana),
Docker(HL Fabric), Cardano,

Aleo, Wasm

DIY, Fork, Substrate, 	
Exonum, Cosmos

Languages N/A Bitcoin’s Script, Stellar
OPS, Marlowe

Solidity, Vyper (Python), Plutus
(Haskell), TS, Go, Java, Rust, C,

Leo
Rust, go, C++

Example
applications

{Proof of existance,
Colored Coins}

∪ {escrow, multisigs,
payment channels, stable
coins, DeFi, DEX, Internet

voting}

∪ {zkSNARKs, DEX+,
Gambling,TornadoCash}

Filecoin, Golem, StorJ,
zkSync, StarkNet, and

other side-chains

Conclusions

• Try to formulate your problem to fit the standard blockchain transaction (like
proof of existence).

• If it’s hard, troublesome, or impossible then move to NTC smart contract.

• If it’s hard, troublesome, or impossible then move to TC smart contract.

• If it’s too expensive, or too slow or does not meet your trust assumptions
create a dedicated blockchain.

• Similar to building a mobile app: web app, multi-platform app, then native
apps.

Rate the lecture from 0 to 5

• Go to https://stellot.com/#/voting/rate-the-lecture-from-0-to-5-qk3nuv

• Rate the lecture anonymously on #blockchain

https://stellot.com/#/voting/rate-the-lecture-from-0-to-5-qk3nuv

Questions?

Stanisław Barański
stanislaw.baranski@pg.edu.pl
https://stan.bar 15.12.2022

https://stan.bar

