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There is no doubt, that traditional paper-based voting still lags behind gov-
ernment digitalization. Analysis of this area quickly reveals several unsolved
issues.

Voting is one of the most popular mechanisms for collective decision-making,
prevalent in all types of communities; from housing associations and board
members, through domestic presidential elections, to all forms of global voting
that take place on the internet.

The act of voting can occur in different ways including paper-based precinct
voting, mail-in ballots, electronically using DRE voting machine and internet
voting.

Of all of them, internet voting is the most conventional, cheapest, fastest, and
safest (e.g., during the outbreak of COVID-19), and hence, a desirable method
for conducting voting.

Internet voting can increase turnout and the frequency of votings, but most
importantly, it can catalyze the further development of modern democracy.
Enabling practical applications of direct democracy, liquid democracy, and all
other sorts of voting methods like Approval voting, Alternative vote, Score
voting, and many others [1].

Visions of smart cities, crypto cities [2], Decentralised Autonomous Organisations
[3], and other forms of algorithmic governance [4] rely on the existence of internet
voting, so there is a high demand for such systems.

Online voting is often compared to online banking. Admittedly, online voting
requires much higher security than online banking. Many researchers and experts
in the field doubt the possibility of conducting public voting over the internet
[5]–[10]. The resistance lies—among others—in insufficient confidence in the
technology and a need for trust in the authorities controlling the voting process.

“Blockchain voting is overrated among uninformed people but underrated among
informed people,” says Vitalik Buterin, the co-founder of Ethereum, suggesting
more optimism in academia about internet voting [11].
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Vitalik Buterin proposed the concept of MACI which is a base layer for coercion-
resistant, secure, and private internet voting [12].

The system struggles with the assumption about the existence of a trusted-third
party coordinator and is based on the Ethereum blockchain, which—due to high
transaction costs and low throughput—may not be acceptable in practical uses.

Overview
The project aims to solve the problem of internet voting by employing blockchain
[13], MPC [14], co-zkSNARK [15], and an ad-hoc peer-to-peer network consisting
of voters’ smartphones and laptops. Resulting in an internet voting protocol
that achieves security, integrity, coercion-resistance, and privacy, without any
trusted third party.

Value proposition
1. Convenience, and safety. No need to leave your home to participate in

voting.
2. Cheap. No need to print ballot papers or hire people to coordinate the

voting process.
3. Trustless, secure, transparent. Users don’t need to trust the authorities

that their votes have been included and that the counting process has been
correct.

4. Increased turnouts and the frequency of votings.
5. Enabling direct democracy, liquid democracy, and all other sorts of voting

methods like Approval voting, Alternative vote, Score voting, and many
others [1]

Economic modeling
The solution is going to be open-sourced and published in a peer-reviewed journal.
However, in the future, we plan to monetise it in a pay-per-voting or software
licensing model.

Technical vision
We will implement the proposed protocol by incrementally enhancing the current
one [13]:

1. First, we will develop an MPC protocol to compute the encryption key.
This is achieved using Shamir Secret Sharing (SSS) or Distributed Key
Generation (DKG) schemes [16], [17]. The MPC-generated encryption key
will replace the current server-generated encryption key.
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2. Then, we will replace the current storage mechanism based on Stellar
transactions, with the new Stellar’s Soroban smart contract platform 1.

3. Then, we will implement the MPC protocol for decryption and tally the
votes stored in Soroban smart contract. This will remove the need for
trusted-third-party used in the current protocol [13].

4. Then, we will develop the zkSNARK protocol for generating proof of
correctness of both MPC functionalities. The generated proof of correctness
will be published to smart contracts along with the calculated results.

Technical overview
Voters form a peer-to-peer network using their smartphones. Let’s assume a
voter consists of a smartphone and a key pair (see Figure 1).

Figure 1: Notation.

The first step that the network of voters’ smartphones has to do is to form a
peer-to-peer (or rather, smartphone-to-smartphone) network [18], [19] ˆ86890b

A distributed network consisting of eligible voters runs a blockchain and MPC
software. Consequently, two functionally separate networks (blockchain and
MPC) are running on voters’ devices. Blockchain network act as bulletin boards,
where all transactions are collected and accessible to anyone. MPC network offers
two functionalities: 1) jointly generating encryption key; 2) jointly decrypting
and tallying votes, along with producing a zk-SNARK proof. The networks
are communicating with each other for fetching votes and published results. A
big-picture idea of the proposed system is presented in Figure 2.

The voting process consists of three phases:

1. bootstrapping p2p network phase presented in section ;
2. distributed encryption key generation phase presented in section and figure

3;
3. casting votes phase presented in section and figure 4;
4. tally phase presented in section and figure 5.
1https://soroban.stellar.org
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Figure 2: Overview of the proposed system
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Bootstraping p2p network

The first step that the network of voters’ smartphones has to do is to form
a peer-to-peer (or rather, smartphone-to-smartphone) network [18], [19]. The
network should be closed-membership, meaning that only eligible participants
are allowed to join. This is achieved by publishing a predefined list of public keys
R = {pk1, ..., pkn} corresponding to the eligible voters, who holds secret keys sk,
such that, pk ≡ g ∗ sk for some known generator g. We use SNARK-friendly
EdDSA public-key cryptosystem.

Depending on the scale and type of voting, such a list can be created by organizers,
or locally by the voters themselves. In order to prevent selling keypairs to briber,
the keypairs should be associated with some stake: proof of citizenship of a
country, high reputation in a local community, proof of humanity, or some
amount of cryptocurrency, in such a way that the value of a stake is worth more
than a vote from such address.

To establish a peer-to-peer (p2p) network over the internet it is required to solve
many network-related problems. Namely,

• Most of smartphones connected to the Internet are behind the NAT or
some kind of firewall. Such devices work in asymmetric access policy,
in which they can establish connections to other devices, but others can
not establish connections to them. In settings where all devices work in
asymmetric access policly it is impossible to start any connection [20]. To
solve the issue we can use techniques like Traversal Using Relays around
NAT (TURN), Circuit Relays, Rendezvous servers [21], [22], Hole Punching,
Session Traversal Utilities for NAT (STUN) [23], Interactive Connectivity
Establishment (ICE)[24], and WebRTC [25].

• In a p2p network the number of connections between peers grows quadrat-
ically, i.e., n2, where n is the number of peers in the network. Moreover,
there may be multiple connections between peers for each used protocol.
To reduce the number of connections, we can use multiplexing like QUIC,
Yamux, or Mplex [26]), which allows re-using established connections for
several protocols.

• The connections must be authenticated and encrypted. To solve the issue,
we can use techniques like TLS [27] or Noise [28].

• Peers must be able to discover each other. To do this, depending on network
conditions, we can use Bootstrap peer list, Multicast DNS (mDNS), or
Rendezvous servers.

To solve those issues we piggyback on the libp2p [29], an open source library,
which addresses all of the mentioned issues.

Distributed Encryption Key Generation

Once the network is established nodes execute the first MPC functionality F1,
which lets nodes jointly compute PK ≡ SK∗g, without reconstructing SK on any
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single device. This is achieved using Shamir Secret Sharing (SSS) or Distributed
Key Generation (DKG) schemes [16], [17].

Symbolically, the functionality F1 is defined as follows:

F1(SK1, ..., SKN ) = DerivePubKey(DKG(SK1, ..., SKN ))→ PK

The reconstruction of a SK is possible only if a sufficient number of votes
(predefined threshold) collude. It would require executing malicious function-
ality Fm(SK1, ..., SKN ) = DerivePrivKey(SK1, ..., SKN )→ SK. The situation
should not happen under the honest majority assumption.

Figure 3: Setup phase of the proposed i-voting system.

Voting phase

Following MACI [30] protocol. Initially, at time Tstart, nodes begins with an
internal state S = {i : (key = pki, vote = ∅)} for i ∈ 1..n. Let us assume O to
be a set of all vote options.

Between Tstart and Tend, each eligable voter pk ∈ R is allowed to send a command
cmd that change his vote and/or key state:
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1) not change vote, not change key, cmd := (i, key := Si[key], vote :=
Si[vote]), where Si[key] is the current public key, and Si[vote] is the current
vote option associated with the voter of index i.

2) change vote, not change key, cmd := (i, key := Si[key], vote :=
newVote), where Si[key] is the current public key associated with the
voter of index i, and newVote ∈ O is a new vote option.

3) not change vote, change key, cmd := (i, key := newPk, vote :=
Si[vote]), where newPk is newly derived public key, and Si[vote] is the
current vote option associated with the voter of index i.

4) change vote, change key, cmd := (i, key := newPk, vote := newV ote),
where newPk is newly derived public key, and newVote ∈ O is a new vote
option for the voter of index i.

Each command cmd, before broadcasting to the network, must be 1) signed and
2) encrypted.

The digital signature proves both, the integrity of the content of the transaction,
and the (zero-knowledge) access to secret key k. In our case, signatures also
guarantee the cohersion-resistance property. Once the public key is changed, all
commands signed with the previously set public key do not pass the signature
verification, therefore are invalidated.

Encryption prevents associating voters with their commands, such that there
is no way to prove that the key has been changed or not. Commands are
encrypted using asymmetrically derived encryption/decryption key via Elliptic
Curve Diffie-Hellman (ECDH). Concretely, the voter encrypts the transaction
using a shared key derived from the voting’s public (encryption) key PK and
his secret key ski using ECDH. The decryption will be possible using different
pairs of keys, i.e. voting’s secret key SK and the voter’s public key pki. This is
possible thanks to ECDH scheme, which relies on the equation

ski ∗ PK = ski ∗ SK ∗ g = SK ∗ ski ∗ g = SK ∗ pki.

Since the encryption key is different for each command, only the sender and the
recipient (inside the MPC) can decrypt it.

Moreover, each encryption should append a random value, called salt, to make
two ciphertexts of is same votings indistinguishable.

The voting process is illustrated in Figure 4.

Tally phase

Once the election period has finished, voters agree on a common state of the
recorded transactions on the blockchain.

Then, using the second functionality F2, voters jointly perform decentralized
decryption and tallying of the ballots without reconstructing the decryption key
on a single device.
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Figure 4: Voting phase, voters casting votes to the blockchain

Internally, F2 validates all the recorded transactions and modifies their internal
state accordingly to the content and the type of the transaction. Process each
transaction as follows:

Processing a message msg = (encek(cmd, sig), epk), where cmd is a command,
sig is a signature, epk is an ephemeral public key allowing for deriving encryption
key via ECDH.

procedure F2(SK, msgs)→ r:

each msg in msgs:

ek ← ECDH(SK, epk)

(cmd, sig)← encek(msg)

(i, vote, key)← cmd

ensure verifySi[key](sig, hash(cmd)) = True

ensure vote ∈ O

Si[key]← key

Si[vote]← vote

each o in O:

ro := |{Si[vote] ∈ S : Si[vote] = o}|
output r
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Vector r contains the total number of votes for each option o ∈ O.

Since the tallying and verification of messages’ signatures is done
after the voting period it’s impossible to prove that the transaction is
valid or invalid within the voting period — hence the cohersion-resistance
property of the protocol.

Proving the correctness of multi-party computation for distributed secrets is a
topic under active research. A naive solution would be to embed zk-SNARK
prover into MPC; however, Stanford researchers recently proposed a method
called “Collaborative zk-SNARKs” allowing for a much more efficient approach
[15].

Finally, the key shares Si should be destroyed from all voters’ devices. As long
as the majority of the nodes follow the procedure, the decryption key can not be
reconstructed, that is, the malicious functionality Fm can not be performed.

The results and certificate are published on the Blockchain (bulletin board). See
Figure 5.

Figure 5: Tally phase of the proposed i-voting system.

Verification

After the results and the corresponding certificate has been published on the
blockchain. Anyone—not only the voters taking part in the voting—can verify
the correctness of the results using zk-SNARK verifier.
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Open questions
• How to design a protocol resilient to nodes’ unavailability?
• How much RAM and disk space does the proposed protocol use?
• How long does it take to execute both functionalities on a mid-range

smartphone?
• How to prevent DDoS attacks?
• How many votes per second can handle the proposed protocol?
• Which MPC framework to use (e.g., obliv-c, EMP-toolkit, ABY, PyPC or

others [31])?
• Which circuit compiler to use (e.g. libsnark, bellman, ZoKrates, Snarky,

Circom, or others)
• Which proving system to use (libsnark, bellman, dalek bulletproofs, snarkjs,

or others)
• Should we use a public Uniform reference string (URS) or a private Struc-

tured reference string (SRS)?
• What are the trust assumptions implied by each setup?
• Can we reuse the already established trusted setup? (e.g. from Ethereum,

ZCash)
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