
Stanisław Barański
stanislaw.baranski@pg.edu.pl
https://stan.bar

Oblivious Neural
Network

08.06.2022

https://stan.bar

- Use case

- Multi-party computation (MPC)

- Neural Network (NN)

- Oblivious Neural Network (ONN) = NN + MPC

- State-of-the-art

- My work

Agenda

Medical prognosis using machine learning
Use case

Medical prognosis using machine learning
Use case

Medical prognosis using machine learning
Use case

Problems:

- The ML Provider cannot share the model as it may be proprietary

- The laboratory can not send input data to the ML Provide

because of legal prohibitions or complex agreements.

- Privacy risks

Medical prognosis using machine learning
Use case

Is it possible to do this computation without the
radiology lab ever sharing the patient’s sensitive data
and the ML provider sharing its proprietary model?

• Server learns nothing about Client's input;

• Client learns nothing about the Server’s model;

• Yet the predictions are correct.

Medical prognosis using machine learning
Problem statement

Ideal world

Ideal solution

Ideal solution

Magic?
No, just cryptography

Multi-party computation (MPC)

• Multi-party computation (MPC) enables a group of
independent parties who do not trust each other to jointly
compute a function where is the private input
for i-th party.

f(x1, x2…xn) xi

Yao’s Millionaires Problem
MPC Applications

"Two millionaires wish to know who is richer without revealing
their actual wealth.”

So the goal is to compute where is the first party’s
private input and is the second party’s private input.

x1 ≤ x2 x1
x2

f(x1, x2) = x1 ≤ x2

MPC Intuition
Function as a lookup table
• P_x (server) represents a function

 as a lookup table.f(x1, x2…xn)

MPC Intuition
Function as a lookup table
• P_x (server) represents a function

 as a lookup table.

• P_x encrypts the table using randomly
selected keys for each value of x and y.

f(x1, x2…xn)

• P_x (server) represents a function as
a lookup table.

• P_x encrypts the table using randomly selected
keys for each value of x and y.

• P_x randomly permute the table and send it to the
other party P_y (client).

• The goal is to let the other party encrypt only the
f(x,y) corresponding to the selected values x and y.

• P_x sends his k_x to P_y.

• P_x offers P_y to pick one value out of |Y| using
Oblivious Transfer (OT)

• P_y, having both keys k_x and k_y can decrypt
the value f(x,y), without learning anything about
x.

f(x1, x2…xn)

MPC Intuition
Function as a lookup table

• The size of the table is

• For two uint32’s the size of the table is

• Each value encoded on 4 bytes

•

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem

• The size of the table is

• For two uint32’s the size of the table is

• Each value encoded on 4 bytes

•

But, for a small domains it works fine

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem

MPC practical solution
Yao’s Garbled Circuit

- Logic gates have a domain size of 4 = |{0,1}| x |{0,1}|.

- We can apply the lookup table technique to a sequence of logic gates,
without blowing out the table size.

Thanks to Church Theorem we know that every algorithm can be represented
as

• Turing machine

• RAM machine

• Logic gate network

As a result we can represent any algorithm via logic gate network.

Then by representing them as an encrypted lookup table compute MPC, and
we get Yao’s Garbled Circuit (GC) technique.

MPC practical solution
Yao’s Garbled Circuit

Obvious Neural Network
What is the function f(x,y) ?

What is the function f(x,y) ?
What is neural network
• A neural network consist of a pipeline of layers. Each layer

receives and input vector, process it to produce an output that
serves as input to the next layer. The first layer is an input, the
last layer outputs the final prediction.

• A typical neural network process input data in groups of layers,
by first applying linear transformations, followed by the
application of non-linear activation function.

• input -> linear transformations -> non-linear activation function
-> ... -> output

What is neural network
Linear and non-linear transformations
• The commonest linear transformation in NN is matrix

multiplications and additions.

•

• The commonest non-linear transformation in NN is logistic
function (sigmoid), Tanh, ReLU, softmax …

y := W ⋅ x + b

What is neural network
Linear and non-linear transformations

y := W ⋅ x + b y := tanh(x)

y := W ⋅ x + b y := tanh(x) z := W ⋅ x + b

Neural network prediction is all about matrix multiplications
and additions

• As a result, any neural network can be represented as a model

• z := (WL * fL−1(. . . f1(W1 * X + B1) . . .) + bL)

What is the function f(x,y) ?
• f(X, (W1, . . . , WL, B1, . . . , bL)) := WL ⋅ fL−1(. . . f1(W1 ⋅ X + B1) . . .) + bL

Oblivious Neural Network

Oblivious activation function

• Piecewise linear functions like LeRU = max(0,y) are easily
implemented using GC.

• Smooth functions like sigmoid are hard to
implement using MPC because both division and
exponentiation are computationally expensive, therefore
approximation is used.

• About 14 segments are enough.

f(y) =
1

1 + e−y

What is the function f(x,y) ?
• f(X, (W1, . . . , WL, B1, . . . , bL)) := WL ⋅ fL−1(. . . f1(W1 ⋅ X + B1) . . .) + bL

Oblivious Neural Network
State-of-the-art
• CryptoNets — CryptoNets: Applying Neural Networks to Encrypted Data with High

Throughput and Accuracy (Microsoft Research)(2016)

• SecureML — SecureML: A System for Scalable Privacy-Preserving Machine Learning (Visa
Research, University of Maryland) (2017)

• MiniONN — Oblivious Neural Network Predictions via MiniONN Transformations (Aalto
University) (2017)

• Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications (UC
San Diego, TU Darmstadt) (2018)

• GAZELLE — GAZELLE: A Low Latency Framework for Secure Neural Network Inference (MIT)
(2018)

• XONN — XONN: XNOR-based Oblivious Deep Neural Network Inference (Microsoft Research)
(2019)

• EzPC — EzPC: Programmable, Efficient, and Scalable Secure Two-Party Computation for
Machine Learning (Microsoft Research)(2019)

• Delphi — Delphi: A Cryptographic Inference Service for Neural Networks (UC Berkeley) (2020)

• CrypTFlow — CRYPTFLOW: Secure TensorFlow Inference (Microsoft) (2020)

Oblivious Neural Network
State-of-the-art

My work
Secure internet voting using distributed networks

References
• Smart, Nigel P., and Nigel P. Smart. Cryptography made simple. Springer, 2016.

• Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party
computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.

• Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy." International conference on machine learning. PMLR, 2016.

• Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine
learning." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.

• Liu, Jian, et al. "Oblivious neural network predictions via minionn transformations." Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security. 2017.

• Riazi, M. Sadegh, et al. "Chameleon: A hybrid secure computation framework for machine learning
applications." Proceedings of the 2018 on Asia conference on computer and communications security. 2018.

• Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "{GAZELLE}: A low latency framework for
secure neural network inference." 27th USENIX Security Symposium (USENIX Security 18). 2018.

• Riazi, M. Sadegh, et al. "{XONN}:{XNOR-based} Oblivious Deep Neural Network Inference." 28th USENIX Security
Symposium (USENIX Security 19). 2019.

• Chandran, Nishanth, et al. "EzPC: programmable, efficient, and scalable secure two-party computation for machine
learning." Cryptology ePrint Archive (2017).

• Mishra, Pratyush, et al. "Delphi: A cryptographic inference service for neural networks." 29th USENIX Security
Symposium (USENIX Security 20). 2020.

• Kumar, Nishant, et al. "Cryptflow: Secure tensorflow inference." 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020.

Questions?

Stanisław Barański
stanislaw.baranski@pg.edu.pl
https://stan.bar
Presentation: https://stan.bar/slides/2022_06_08_oblivious-neural-networks.pdf

mailto:stanislaw.baranski@pg.edu.pl
https://stan.bar
https://stan.bar/slides/2022_06_08_oblivious-neural-networks.pdf

