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Medical prognosis using machine learning
Use case

Problems:

- The ML Provider cannot share the model as it may be proprietary

- The laboratory can not send input data to the ML Provide 

because of legal prohibitions or complex agreements.

- Privacy risks



Medical prognosis using machine learning
Use case

Is it possible to do this computation without the 
radiology lab ever sharing the patient’s sensitive data 
and the ML provider sharing its proprietary model?



• Server learns nothing about Client's input;


• Client learns nothing about the Server’s model;


• Yet the predictions are correct.

Medical prognosis using machine learning
Problem statement



Ideal world



Ideal solution



Ideal solution

Magic?  
No, just cryptography



Multi-party computation (MPC)

• Multi-party computation (MPC) enables a group of 
independent parties who do not trust each other to jointly 
compute a function  where  is the private input 
for i-th party.

f(x1, x2…xn) xi



Yao’s Millionaires Problem
MPC Applications

"Two millionaires wish to know who is richer without revealing 
their actual wealth.”


So the goal is to compute  where  is the first party’s 
private input and  is the second party’s private input. 


x1 ≤ x2 x1
x2

f(x1, x2) = x1 ≤ x2



MPC Intuition
Function as a lookup table
• P_x (server) represents a function 

 as a lookup table.f(x1, x2…xn)



MPC Intuition
Function as a lookup table
• P_x (server) represents a function 

 as a lookup table.


• P_x encrypts the table using randomly 
selected keys for each value of x and y.

f(x1, x2…xn)



• P_x (server) represents a function  as 
a lookup table.


• P_x encrypts the table using randomly selected 
keys for each value of x and y.


• P_x randomly permute the table and send it to the 
other party P_y (client).


• The goal is to let the other party encrypt only the 
f(x,y) corresponding to the selected values x and y.


• P_x sends his k_x to P_y.


• P_x offers P_y to pick one value out of |Y| using 
Oblivious Transfer (OT)


• P_y, having both keys k_x and k_y can decrypt 
the value f(x,y), without learning anything about 
x.

f(x1, x2…xn)

MPC Intuition
Function as a lookup table



• The size of the table is 


• For two uint32’s the size of the table is 



• Each value encoded on 4 bytes


•

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem



• The size of the table is 


• For two uint32’s the size of the table is 



• Each value encoded on 4 bytes


• 


But, for a small domains it works fine

|X | × |Y |

|uint32 | × |uint32 | = 232 × 232 = 264

264 × 4bytes = too large

Function as a lookup problem



MPC practical solution
Yao’s Garbled Circuit 

- Logic gates have a domain size of 4 = |{0,1}| x |{0,1}|.

- We can apply the lookup table technique to a sequence of logic gates, 
without blowing out the table size.


Thanks to Church Theorem we know that every algorithm can be represented 
as

• Turing machine

• RAM machine

• Logic gate network


As a result we can represent any algorithm via logic gate network. 

Then by representing them as an encrypted lookup table compute MPC, and 
we get Yao’s Garbled Circuit (GC) technique.



MPC practical solution
Yao’s Garbled Circuit 



Obvious Neural Network
What is the function f(x,y) ?



What is the function f(x,y) ?
What is neural network
• A neural network consist of a pipeline of layers. Each layer 

receives and input vector, process it to produce an output that 
serves as input to the next layer. The first layer is an input, the 
last layer outputs the final prediction.


• A typical neural network process input data in groups of layers, 
by first applying linear transformations, followed by the 
application of non-linear activation function.


• input -> linear transformations -> non-linear activation function 
-> ... -> output



What is neural network
Linear and non-linear transformations
• The commonest linear transformation in NN is matrix 

multiplications and additions.


• 


• The commonest non-linear transformation in NN is logistic 
function (sigmoid), Tanh, ReLU, softmax …

y := W ⋅ x + b



What is neural network
Linear and non-linear transformations

y := W ⋅ x + b y := tanh(x)

y := W ⋅ x + b y := tanh(x) z := W ⋅ x + b



Neural network prediction is all about matrix multiplications 
and additions

• As a result, any neural network can be represented as a model


• z := (WL * fL−1( . . . f1(W1 * X + B1) . . . ) + bL)



What is the function f(x,y) ?
• f(X, (W1, . . . , WL, B1, . . . , bL)) := WL ⋅ fL−1( . . . f1(W1 ⋅ X + B1) . . . ) + bL



Oblivious Neural Network





Oblivious activation function

• Piecewise linear functions like LeRU = max(0,y) are easily 
implemented using GC.


• Smooth functions like sigmoid  are hard to 
implement using MPC because both division and 
exponentiation are computationally expensive, therefore 
approximation is used.


• About 14 segments are enough.

f(y) =
1

1 + e−y



What is the function f(x,y) ?
• f(X, (W1, . . . , WL, B1, . . . , bL)) := WL ⋅ fL−1( . . . f1(W1 ⋅ X + B1) . . . ) + bL



Oblivious Neural Network
State-of-the-art
• CryptoNets — CryptoNets: Applying Neural Networks to Encrypted Data with High 

Throughput and Accuracy (Microsoft Research)(2016)


• SecureML — SecureML: A System for Scalable Privacy-Preserving Machine Learning (Visa 
Research, University of Maryland) (2017)


• MiniONN — Oblivious Neural Network Predictions via MiniONN Transformations (Aalto 
University) (2017) 


• Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications (UC 
San Diego, TU Darmstadt) (2018) 


• GAZELLE — GAZELLE: A Low Latency Framework for Secure Neural Network Inference (MIT) 
(2018) 


• XONN — XONN: XNOR-based Oblivious Deep Neural Network Inference (Microsoft Research)
(2019)


• EzPC — EzPC: Programmable, Efficient, and Scalable Secure Two-Party Computation for 
Machine Learning (Microsoft Research)(2019)


• Delphi — Delphi: A Cryptographic Inference Service for Neural Networks (UC Berkeley) (2020)


• CrypTFlow — CRYPTFLOW: Secure TensorFlow Inference (Microsoft) (2020)



Oblivious Neural Network
State-of-the-art



My work
Secure internet voting using distributed networks



References
• Smart, Nigel P., and Nigel P. Smart. Cryptography made simple. Springer, 2016.


• Evans, David, Vladimir Kolesnikov, and Mike Rosulek. "A pragmatic introduction to secure multi-party 
computation." _Foundations and Trends® in Privacy and Security_ 2.2-3 (2018): 70-246.


• Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data with high throughput and 
accuracy." International conference on machine learning. PMLR, 2016.


• Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine 
learning." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.


• Liu, Jian, et al. "Oblivious neural network predictions via minionn transformations." Proceedings of the 2017 ACM 
SIGSAC conference on computer and communications security. 2017.


• Riazi, M. Sadegh, et al. "Chameleon: A hybrid secure computation framework for machine learning 
applications." Proceedings of the 2018 on Asia conference on computer and communications security. 2018.


• Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan. "{GAZELLE}: A low latency framework for 
secure neural network inference." 27th USENIX Security Symposium (USENIX Security 18). 2018.


• Riazi, M. Sadegh, et al. "{XONN}:{XNOR-based} Oblivious Deep Neural Network Inference." 28th USENIX Security 
Symposium (USENIX Security 19). 2019.


• Chandran, Nishanth, et al. "EzPC: programmable, efficient, and scalable secure two-party computation for machine 
learning." Cryptology ePrint Archive (2017).


• Mishra, Pratyush, et al. "Delphi: A cryptographic inference service for neural networks." 29th USENIX Security 
Symposium (USENIX Security 20). 2020.


• Kumar, Nishant, et al. "Cryptflow: Secure tensorflow inference." 2020 IEEE Symposium on Security and Privacy (SP). 
IEEE, 2020.



Questions?

Stanisław Barański 
stanislaw.baranski@pg.edu.pl 
https://stan.bar 
Presentation: https://stan.bar/slides/2022_06_08_oblivious-neural-networks.pdf 

mailto:stanislaw.baranski@pg.edu.pl
https://stan.bar
https://stan.bar/slides/2022_06_08_oblivious-neural-networks.pdf

